104 research outputs found

    Splitting of doubly quantized vortices in dilute Bose-Einstein condensates

    Full text link
    We investigate the dynamics of doubly charged vortices generated in dilute Bose-Einstein condensates by using the topological phase imprinting technique. We find splitting times of such vortices and show that thermal atoms are responsible for their decay.Comment: 1 page, 1 figur

    Decay of multiply charged vortices at nonzero temperatures

    Full text link
    We study the instability of multiply charged vortices in the presence of thermal atoms and find various scenarios of splitting of such vortices. The onset of the decay of a vortex is always preceded by the increase of a number of thermal (uncondensed) atoms in the system and manifests itself by the sudden rise of the amplitude of the oscillations of the quadrupole moment. Our calculations show that the decay time gets shorter when the multiplicity of a vortex becomes higher.Comment: 4 pages, 6 figure

    Orbital-selective Mott phase and spin nematicity in Ni-substituted FeTe0.65_{0.65}Se0.35_{0.35} single crystals

    Full text link
    The normal state in iron chalcogenides is metallic but highly unusual, with orbital and spin degrees of freedom partially itinerant or localized depending on temperature, leading to many unusual features. In this work, we report on the observations of two of such features, the orbital selective Mott phase (OSMP) and spin nematicity, evidenced in magnetization and magnetotransport [resistivity, Hall effect, angular magnetoresistance (AMR)] of Ni-substituted FeTe0.65_{0.65}Se0.35_{0.35} single crystals. Two series of single crystals Fe1+δy_{1+{\delta}-y}Niy_yTe0.65_{0.65}Se0.35_{0.35} were prepared, with 0<y<0.20 < y < 0.2, and δ\delta either positive (S crystals) or negative (F crystals), depending on the crystallization rate. The S crystals, with single, tetragonal phase exhibit superconducting (SC) properties inferior to F crystals, which contain Fe vacancy-rich monoclinic inclusions. Substitution of Ni dopes both types of crystals with electrons, what eliminates some of the hole pockets from Fermi level, leaving only one, originating from dxyd_{xy} orbital. We show that electron-dominated transport, observed at low TT at large yy, is replaced by hole-dominated transport at T>180T > 180 K, suggesting direct link with the appearance of the dz2d_{z^2} hole pockets at X points of the Brillouin zone in the OSMP phase, as recently reported by angular resolved photoemission experiments (Commun. Phys. 5, 29 (2022)). The AMR of S crystals shows the C4C_4 rotational symmetry of in-plane magnetocrystalline anisotropy at small yy, replaced by C2C_2 symmetry at intermediate yy, indicating development of Ni doping-induced spin nematicity. The C4C_4 symmetry is preserved in F crystals due to microstructural disorder related to vacancy-rich inclusions. The tendency towards nematicity, induced by Ni doping, appears to be the most important factor producing inferior superconducting properties of S crystals

    Nodeless superconductivity and preserved time-reversal symmetry in the noncentrosymmetric Mo3P superconductor

    Full text link
    We report a comprehensive study of the noncentrosymmetric superconductor Mo3_3P. Its bulk superconductivity, with Tc=5.5T_c = 5.5 K, was characterized via electrical resistivity, magnetization, and heat-capacity measurements, while its microscopic electronic properties were investigated by means of muon-spin rotation/relaxation (μ\muSR) and nuclear magnetic resonance (NMR) techniques. In the normal state, NMR relaxation data indicate an almost ideal metallic behavior, confirmed by band-structure calculations, which suggest a relatively high electron density of states, dominated by the Mo 4d4d-orbitals. The low-temperature superfluid density, determined via transverse-field μ\muSR and electronic specific heat, suggest a fully-gapped superconducting state in Mo3_3P, with Δ0=0.83\Delta_0= 0.83 meV, the same as the BCS gap value in the weak-coupling case, and a zero-temperature magnetic penetration depth λ0=126\lambda_0 = 126 nm. The absence of spontaneous magnetic fields below the onset of superconductivity, as determined from zero-field μ\muSR measurements, indicates a preserved time-reversal symmetry in the superconducting state of Mo3_3P and, hence, spin-singlet pairing.Comment: 13 pages, 16 figures, accepted by Phys. Rev.

    Momentum-Resolved Electronic Structure of the High-TcT_{c} Superconductor Parent Compound BaBiO3_{3}

    Full text link
    We investigate the band structure of BaBiO3_{3}, an insulating parent compound of doped high-TcT_{c} superconductors, using \emph{in situ} angle-resolved photoemission spectroscopy on thin films. The data compare favorably overall with density functional theory calculations within the local density approximation, demonstrating that electron correlations are weak. The bands exhibit Brillouin zone folding consistent with known BiO6_{6} breathing distortions. Though the distortions are often thought to coincide with Bi3+^{3+}/Bi5+^{5+} charge ordering, core level spectra show that bismuth is monovalent. We further demonstrate that the bands closest to the Fermi level are primarily oxygen derived, while the bismuth 6s6s states mostly contribute to dispersive bands at deeper binding energy. The results support a model of Bi-O charge transfer in which hole pairs are localized on combinations of the O 2p2p orbitals.Comment: minor changes to text and other figures; includes link to online Supplemental Material; accepted to Phys. Rev. Let

    Growth conditions, structure, and superconductivity of pure and metal-doped FeTe1-xSex single crystals

    Full text link
    Superconducting single crystals of pure FeTe1 xSex and FeTe0.65Se0.35 doped with Co, Ni, Cu, Mn, Zn, Mo, Cd, In, Pb, Hg, V, Ga, Mg, Al, Ti, Cr, Sr or Nd into Fe ions site have been grown applying Bridgman's method. It has been found that the sharpness of transition to the superconducting state in FeTe1 xSex is evidently inversely correlated with crystallographic quality of the crystals. Among all of the studied dopants only Co, Ni and Cu substitute Fe ions in FeTe0.65Se0.35 crystals. The remaining examined ions do not incorporate into the crystal structure. Nevertheless, they form inclusions together with selenium, tellurium and/or iron, what changes the chemical composition of host matrix and therefore influences Tc value. Small disorder introduced into magnetic sublattice, by partial replacement of Fe ions by slight amount of nonmagnetic ions of Cu (~ 1.5 at%) or by magnetic ions of Ni (~ 2 at%) and Co (~5 at%) with spin value different than that of Fe ion, completely suppresses superconductivity in FeTe1 xSex system. This indicates that even if superconductivity is observed in the system containing magnetic ions it can not survive when the disorder in magnetic ions sublattice is introduced, most likely because of magnetic scattering of Cooper pairs.Comment: 18 pages, 12 figures, 3 table

    Microstructural magnetic phases in superconducting FeTe0.65Se0.35

    Full text link
    In this paper, we address a number of outstanding issues concerning the nature and the role of magnetic inhomogenities in the iron chalcogenide system FeTe1-xSex and their correlation with superconductivity in this system. We report morphology of superconducting single crystals of FeTe0.65Se0.35 studied with transmission electron microscopy, high angle annular dark field scanning transmission electron microscopy and their magnetic and superconducting properties characterized with magnetization, specific heat and magnetic resonance spectroscopy. Our data demonstrate a presence of nanometre scale hexagonal regions coexisting with tetragonal host lattice, a chemical disorder demonstrating non homogeneous distribution of host atoms in the crystal lattice, as well as hundreds-of-nanometres-long iron-deficient bands. From magnetic data and ferromagnetic resonance temperature dependence, we attribute magnetic phases in Fe-Te-Se to Fe3O4 inclusions and to hexagonal symmetry nanometre scale regions with structure of Fe7Se8 type. Our results suggest that nonhomogeneous distribution of host atoms might be an intrinsic feature of superconducting Fe-Te-Se chalcogenides and we find a surprising correlation indicating that faster grown crystal of inferior crystallographic properties is a better superconductor.Comment: 16 pages, 8 figures, 2 table

    Hidden magnetism uncovered in charge ordered bilayer kagome material ScV_6Sn_6

    Full text link
    Charge ordered kagome lattices have been demonstrated to be intriguing platforms for studying the intertwining of topology, correlation, and magnetism. The recently discovered charge ordered kagome material ScV_6Sn_6 does not feature a magnetic groundstate or excitations, thus it is often regarded as a conventional paramagnet. Here, using advanced muon-spin rotation spectroscopy, we uncover an unexpected hidden magnetism of the charge order. We observe a striking enhancement of the internal field width sensed by the muon ensemble, which takes place within the charge ordered state. More remarkably, the muon spin relaxation rate below the charge ordering temperature is substantially enhanced by applying an external magnetic field. Taken together with the hidden magnetism found in AV_3Sb_5 (A = K, Rb, Cs) and FeGe kagome systems, our results suggest ubiqitous time-reversal symmetry-breaking in charge ordered kagome lattices.Comment: 9 pages, 4 figure

    Theory of Multidimensional Solitons

    Full text link
    We review a number of topics germane to higher-dimensional solitons in Bose-Einstein condensates. For dark solitons, we discuss dark band and planar solitons; ring dark solitons and spherical shell solitons; solitary waves in restricted geometries; vortex rings and rarefaction pulses; and multi-component Bose-Einstein condensates. For bright solitons, we discuss instability, stability, and metastability; bright soliton engineering, including pulsed atom lasers; solitons in a thermal bath; soliton-soliton interactions; and bright ring solitons and quantum vortices. A thorough reference list is included.Comment: review paper, to appear as Chapter 5a in "Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer-Verlag
    corecore