194 research outputs found

    Serine/threonine protein phosphatase PstP of Mycobacterium tuberculosis is necessary for accurate cell division and survival of pathogen

    Get PDF
    Protein phosphatases play vital roles in phosphorylation-mediated cellular signaling. While there are 11 serine/threonine protein kinases in Mycobacterium tuberculosis, only one serine/threonine phosphatase, PstP, has been identified. Although PstP has been biochemically characterized and multiple in vitro substrates identified, its physiological role has not yet been elucidated. In this study we have investigated the impact of PstP on cell growth and survival of the pathogen in the host. Overexpression of PstP led to elongated cells and partially compromised survival. We find that depletion of PstP is detrimental to cell survival, eventually leading to cell death. PstP depletion results in elongated multiseptate cells, suggesting a role for PstP in regulating cell division events. Complementation experiments performed with PstP deletion mutants revealed marginally compromised survival, suggesting that all the domains including extracellular domain are necessary for complete rescue. On the other hand, the catalytic activity of PstP is absolutely essential for the in vitro growth. Mice infection experiments establish a definitive role for PstP in pathogen survival within the host. Depletion of PstP from established infections causes pathogen clearance, indicating the continued presence of PstP is necessary for pathogen survival. Taken together, our data suggests an important role for PstP in establishing and maintaining infection, possibly via the modulation of cell division events

    Death-associated Protein Kinase-1 Expression and Autophagy in Chronic Lymphocytic Leukemia Are Dependent on Activating Transcription Factor-6 and CCAAT/Enhancer-binding Protein-β

    Get PDF
    Expression of DAPK1, a critical regulator of autophagy and apoptosis, is lost in a wide variety of tumors, although the mechanisms are unclear. A transcription factor complex consisting of ATF6 (an endoplasmic reticulum-resident factor) and C/EBP-β is required for the IFN-γ-induced expression of DAPK1. IFN-γ-induced proteolytic processing of ATF6 and phosphorylation of C/EBP-β are obligatory for the formation of this transcriptional complex. We report that defects in this pathway fail to control growth of chronic lymphocytic leukemia (CLL). Consistent with these observations, IFN-γ and chemotherapeutics failed to activate autophagy in CLL patient samples lacking ATF6 and/or C/EBP-β. Together, these results identify a molecular basis for the loss of DAPK1 expression in CLL
    • …
    corecore