216 research outputs found

    Flash Brillouin Scattering: A Confocal Technique for Measuring Glass Transitions at High Scan Rates

    Get PDF

    Wang-Landau study of the random bond square Ising model with nearest- and next-nearest-neighbor interactions

    Full text link
    We report results of a Wang-Landau study of the random bond square Ising model with nearest- (JnnJ_{nn}) and next-nearest-neighbor (JnnnJ_{nnn}) antiferromagnetic interactions. We consider the case R=Jnn/Jnnn=1R=J_{nn}/J_{nnn}=1 for which the competitive nature of interactions produces a sublattice ordering known as superantiferromagnetism and the pure system undergoes a second-order transition with a positive specific heat exponent α\alpha. For a particular disorder strength we study the effects of bond randomness and we find that, while the critical exponents of the correlation length ν\nu, magnetization β\beta, and magnetic susceptibility γ\gamma increase when compared to the pure model, the ratios β/ν\beta/\nu and γ/ν\gamma/\nu remain unchanged. Thus, the disordered system obeys weak universality and hyperscaling similarly to other two-dimensional disordered systems. However, the specific heat exhibits an unusually strong saturating behavior which distinguishes the present case of competing interactions from other two-dimensional random bond systems studied previously.Comment: 9 pages, 3 figures, version as accepted for publicatio

    Intermixed Time-Dependent Self-Focusing and Defocusing Nonlinearities in Polymer Solutions

    Get PDF
    [Image: see text] Low-power visible light can lead to spectacular nonlinear effects in soft-matter systems. The propagation of visible light through transparent solutions of certain polymers can experience either self-focusing or defocusing nonlinearity, depending on the solvent. We show how the self-focusing and defocusing responses can be captured by a nonlinear propagation model using local spatial and time-integrating responses. We realize a remarkable pattern formation in ternary solutions and model it assuming a linear combination of the self-focusing and defocusing nonlinearities in the constituent solvents. This versatile response of solutions to light irradiation may introduce a new approach for self-written waveguides and patterns

    Lifting restrictions on coherence loss when characterizing non-transparent hypersonic phononic crystals

    Get PDF
    Abstract Hypersonic phononic bandgap structures confine acoustic vibrations whose wavelength is commensurate with that of light, and have been studied using either time- or frequency-domain optical spectroscopy. Pulsed pump-probe lasers are the preferred instruments for characterizing periodic multilayer stacks from common vacuum deposition techniques, but the detection mechanism requires the injected sound wave to maintain coherence during propagation. Beyond acoustic Bragg mirrors, frequency-domain studies using a tandem Fabry–Perot interferometer (TFPI) find dispersions of two- and three-dimensional phononic crystals (PnCs) even for highly disordered samples, but with the caveat that PnCs must be transparent. Here, we demonstrate a hybrid technique for overcoming the limitations that time- and frequency-domain approaches exhibit separately. Accordingly, we inject coherent phonons into a non-transparent PnC using a pulsed laser and acquire the acoustic transmission spectrum on a TFPI, where pumped appear alongside spontaneously excited (i.e. incoherent) phonons. Choosing a metallic Bragg mirror for illustration, we determine the bandgap and compare with conventional time-domain spectroscopy, finding resolution of the hybrid approach to match that of a state-of-the-art asynchronous optical sampling setup. Thus, the hybrid pump–probe technique retains key performance features of the established one and going forward will likely be preferred for disordered samples

    Large Tg Shift in Hybrid Bragg Stacks through Interfacial Slowdown

    Get PDF

    Multicritical Points and Crossover Mediating the Strong Violation of Universality: Wang-Landau Determinations in the Random-Bond d=2d=2 Blume-Capel model

    Full text link
    The effects of bond randomness on the phase diagram and critical behavior of the square lattice ferromagnetic Blume-Capel model are discussed. The system is studied in both the pure and disordered versions by the same efficient two-stage Wang-Landau method for many values of the crystal field, restricted here in the second-order phase transition regime of the pure model. For the random-bond version several disorder strengths are considered. We present phase diagram points of both pure and random versions and for a particular disorder strength we locate the emergence of the enhancement of ferromagnetic order observed in an earlier study in the ex-first-order regime. The critical properties of the pure model are contrasted and compared to those of the random model. Accepting, for the weak random version, the assumption of the double logarithmic scenario for the specific heat we attempt to estimate the range of universality between the pure and random-bond models. The behavior of the strong disorder regime is also discussed and a rather complex and yet not fully understood behavior is observed. It is pointed out that this complexity is related to the ground-state structure of the random-bond version.Comment: 12 pages, 11 figures, submitted for publicatio

    Magnetic-field dependence of transport in normal and Andreev billiards: a classical interpretation to the averaged quantum behavior

    Get PDF
    We perform a comparative study of the quantum and classical transport probabilities of low-energy quasiparticles ballistically traversing normal and Andreev two-dimensional open cavities with a Sinai-billiard shape. We focus on the dependence of the transport on the strength of an applied magnetic field BB. With increasing field strength the classical dynamics changes from mixed to regular phase space. Averaging out the quantum fluctuations, we find an excellent agreement between the quantum and classical transport coefficients in the complete range of field strengths. This allows an overall description of the non-monotonic behavior of the average magnetoconductance in terms of the corresponding classical trajectories, thus, establishing a basic tool useful in the design and analysis of experiments.Comment: 11 pages, 12 figures; minor revisions including updated inset of Fig. 4(b) and references; version as accepted for publication to Phys. Rev.

    Wang-Landau study of the 3D Ising model with bond disorder

    Full text link
    We implement a two-stage approach of the Wang-Landau algorithm to investigate the critical properties of the 3D Ising model with quenched bond randomness. In particular, we consider the case where disorder couples to the nearest-neighbor ferromagnetic interaction, in terms of a bimodal distribution of strong versus weak bonds. Our simulations are carried out for large ensembles of disorder realizations and lattices with linear sizes LL in the range L=8−64L=8-64. We apply well-established finite-size scaling techniques and concepts from the scaling theory of disordered systems to describe the nature of the phase transition of the disordered model, departing gradually from the fixed point of the pure system. Our analysis (based on the determination of the critical exponents) shows that the 3D random-bond Ising model belongs to the same universality class with the site- and bond-dilution models, providing a single universality class for the 3D Ising model with these three types of quenched uncorrelated disorder.Comment: 7 pages, 7 figures, to be published in Eur. Phys. J.
    • …
    corecore