157 research outputs found

    A cryptic promoter in potato virus X vector interrupted plasmid construction

    Get PDF
    BACKGROUND: Potato virus X has been developed into an expression vector for plants. It is widely used to express foreign genes. In molecular manipulation, the foreign genes need to be sub-cloned into the vector. The constructed plasmid needs to be amplified. Usually, during amplification stage, the foreign genes are not expressed. However, if the foreign gene is expressed, the construction work could be interrupted. Two different viral genes were sub-cloned into the vector, but only one foreign gene was successfully sub-cloned. The other foreign gene, canine parvovirus type 2 (CPV-2) VP1 could not be sub-cloned into the vector and amplified without mutation (frame shift mutation). RESULTS: A cryptic promoter in the PVX vector was discovered with RT-PCR. The promoter activity was studied with Northern blots and Real-time RT-PCR. CONCLUSION: It is important to recognize the homologous promoter sequences in the vector when a virus is developed as an expression vector. During the plasmid amplification stage, an unexpected expression of the CPV-2 VP1 gene (not in the target plants, but in E. coli) can interrupt the downstream work

    Aero-Structural Modeling of the Truss-Braced Wing Aircraft Using Potential Method with Correction Methods for Transonic Viscous Flow and Wing-Strut Interference Aerodynamics

    Get PDF
    This paper describes an aero-structural modeling method for the Transonic Truss-Braced Wing (TTBW) aircraft using VSPAERO. A vortex-lattice model of the TTBW aircraft is developed, and a transonic and viscous flow correction method is implemented in the VSPAERO models to account for transonic and viscous flow effects. A correction method for the wing-strut interference aerodynamics is developed and applied to the VSPAERO solver. Also, a structural dynamic finite-element model of the TTBW aircraft is developed. This finite-element model includes the geometric nonlinear effect due to the tension in the struts which cause a deflection dependent nonlinear stiffness. The VSPAERO models are coupled to the finite-element model to provide a rapid capability for aero-structural modeling and flutter analysis. A flight-optimized jig twist model is being developed and will be applied for the purpose of generating a full flight dynamic model of the TTBW aircraft

    Advanced Configurations for Very Large Subsonic Transport Airplanes

    Get PDF
    Recent aerospace industry interest in developing a subsonic commercial transport airplane with 50 percent greater passenger capacity than the largest existing aircraft in this category (the Boeing 747-400 with approximately 400-450 seats) has generated a range of proposals based largely on the configuration paradigm established nearly 50 years ago with the Boeing B-47 bomber. While this basic configuration paradigm has come to dominate subsonic commercial airplane development since the advent of the Boeing 707/Douglas DC-8 in the mid-1950's, its extrapolation to the size required to carry more than 600-700 passengers raises several questions. To explore these and a number of related issues, a team of Boeing, university, and NASA engineers was formed under the auspices of the NASA Advanced Concepts Program. The results of a Research Analysis focused on a large, unconventional transport airplane configuration for which Boeing has applied for a patent are the subject of this report. It should be noted here that this study has been conducted independently of the Boeing New Large Airplane (NLA) program, and with the exception of some generic analysis tools which may be common to this effort and the NLA (as will be described later), no explicit Boeing NLA data other than that published in the open literature has been used in the conduct of the study reported here

    Feasibility Study of Short Takeoff and Landing Urban Air Mobility Vehicles Using Geometric Programming

    Get PDF
    Electric Short Takeoff and Landing (eSTOL) vehicles are proposed as a path towards implementing an Urban Air Mobility (UAM) network that reduces critical vehicle certification risks and offers advantages in vehicle performance compared to the widely proposed Electric Vertical Takeoff and Landing (eVTOL) aircraft. An overview is given of the system constraints and key enabling technologies that must be incorporated into the design of the vehicle. The tradeoffs between vehicle performance and runway length are investigated using geometric programming, a robust optimization framework. Runway lengths as short as 100-300 ft are shown to be feasible, depending on the level of technology and the desired cruise speed. The tradeoffs between runway length and the potential to build new infrastructure in urban centers are investigated using Boston as a representative case study. The placement of some runways up to 600ft is shown to be possible in the urban center, with a significant increase in the number of potential locations for runways shorter than 300ft. Key challenges and risks to implementation are discussed

    Advanced turboprop multidisciplinary design and optimization within agile project

    Get PDF
    The present paper deals with the design, analysis and optimization of a 90 passengers turboprop aircraft with a design range of 1200 nautical miles and a cruise Mach number equal to 0.56. The prescribed aircraft is one of the use cases of the AGILE European project, aiming to provide a 3rd generation of multidisciplinary design and optimization chain, following the collaborative and remote aircraft design paradigm, through an heterogenous team of experts. The multidisciplinary aircraft design analysis is set-up involving tools provided by AGILE partners distributed worldwide and run locally from partners side. A complete design of experiment, focused on wing planform variables, is performed to build response surfaces suitable for optimization purposes. The goal of the optimization is the direct operating cost, subject to wing design variables and top-level aircraft requirements

    Blended wing body with boundary layer ingestion conceptual design in a multidisciplinary design analysis optimization environment

    Get PDF
    This paper introduces the GENUS multidisciplinary concept level aircraft design and analysis environment developed by Cranfield University in recent years and it has been applied to the conceptual design of blended wing body (BWB) aircraft. Analytical disciplines include a variety of low-to-medium fidelity, physics-based and empirical methods, and aerodynamic analysis of high-order panel method. Boundary layer ingestion (BLI), as a special module, has been incorporated into the aerodynamic and propulsion analysis. The results of the Cranfield BW-11 are presented. In the highly-constrained design space, a type of highly fuel- efficient BWB concept can be studied, and the advantages of the BLI concept can also be explored based on this framework

    Emerging Synergisms Between Drugs and Physiologically-Patterned Weak Magnetic Fields: Implications for Neuropharmacology and the Human Population in the Twenty-First Century

    Get PDF
    Synergisms between pharmacological agents and endogenous neurotransmitters are familiar and frequent. The present review describes the experimental evidence for interactions between neuropharmacological compounds and the classes of weak magnetic fields that might be encountered in our daily environments. Whereas drugs mediate their effects through specific spatial (molecular) structures, magnetic fields mediate their effects through specific temporal patterns. Very weak (microT range) physiologically-patterned magnetic fields synergistically interact with drugs to strongly potentiate effects that have classically involved opiate, cholinergic, dopaminergic, serotonergic, and nitric oxide pathways. The combinations of the appropriately patterned magnetic fields and specific drugs can evoke changes that are several times larger than those evoked by the drugs alone. These novel synergisms provide a challenge for a future within an electromagnetic, technological world. They may also reveal fundamental, common physical mechanisms by which magnetic fields and chemical reactions affect the organism from the level of fundamental particles to the entire living system

    Moderate exercise may attenuate some aspects of immunosenescence

    Get PDF
    BACKGROUND: Immunosenescence is related to the deterioration of many immune functions, which may be manifested in increased susceptibility to infection, cancer, and autoimmunity. Lifestyle factors, such as diet or physical activity, may influence the senescence of the immune system. It is widely accepted that moderate physical activity may cause beneficial effects for physical and psychological health as well as for the immune system activity in aged people. METHODS: Thirty elderly women aged 62 to 86 were subjected to a two-years authorized physical activity program. Peripheral blood lymphocytes distribution and the production of cytokines involved in the immune response development and regulation (IL-2, IL-4 and IFN-γ) were investigated. The same parameters were evaluated in two control groups of women: a sedentary group of 12 elderly women selected for the second round of the physical activity program and in a group of 20 sedentary young women. Flow cytometry methods were used for the examination of surface markers on peripheral blood lymphocytes and intracellular cytokines expression. RESULTS: The distribution of the main lymphocytes subpopulations in the peripheral blood of elderly women did not show changes after long-term moderate physical training. The percentage of lymphocytes expressing intracellular IL-2 was higher in the group of women attending 2-years physical activity program than in the control group of elderly sedentary women, and it was similar to the value estimated in the group of young sedentary women. There was no difference in the intracellular expression of IL-4 and IFN-γ between the active and elderly sedentary women. CONCLUSIONS: Our results suggest that moderate, long-term physical activity in elderly women may increase the production of IL-2, an important regulator of the immune response. This may help ameliorate immunosenescence in these women

    N+3 Aircraft Concept Designs and Trade Studies

    Get PDF
    Appendices A to F present the theory behind the TASOPT methodology and code. Appendix A describes the bulk of the formulation, while Appendices B to F develop the major sub-models for the engine, fuselage drag, BLI accounting, etc
    corecore