1,900 research outputs found

    Particle-unstable light nuclei with a Sturmian approach that preserves the Pauli principle

    Get PDF
    Sturmian theory for nucleon-nucleus scattering is discussed in the presence of all the phenomenological ingredients necessary for the description of weakly-bound (or particle-unstable) light nuclear systems. Currently, we use a macroscopic potential model of collective nature. The analysis shows that the couplings to low-energy collective-core excitations are fundamental but they are physically meaningful only if the constraints introduced by the Pauli principle are taken into account. The formalism leads one to discuss a new concept, Pauli hindrance, which appears to be important to understand the structure of weakly-bound and unbound systems.Comment: 5 pages, 2 figures, 1 table, contribution to proceedings of "18th International IUPAP Conference on Few-Body Problems in Physics," Santos, Brazil, August 21-26, 200

    Linking the exotic structure of 17{}^{17}C to its unbound mirror 17{}^{17}Na

    Full text link
    The structure of 17{}^{17}C is used to define a nuclear interaction that, when used in a multichannel algebraic scattering theory for the n+16n+{}^{16}C system, gives a credible definition of the (compound) excitation spectra. When couplings to the low-lying collective excitations of the 16{}^{16}C-core are taken into account, both sub-threshold and resonant states about the n+16n+{}^{16}C threshold are found. Adding Coulomb potentials to that nuclear interaction, the method is used for the mirror system of p+16p+{}^{16}Ne to specify the low-excitation spectrum of the particle unstable 17^{17}Na. We compare the results with those of a microscopic cluster model. A spectrum of low excitation resonant states in 17{}^{17}Na is found with some differences to that given by the microscopic-cluster model. The calculated resonance half-widths (for proton emission) range from ∼2\sim 2 to ∼672\sim 672 keV.Comment: 13 pages, 5 figure

    Coupled-channel calculation of bound and resonant spectra of Lambda-9Be and Lambda-13C hypernuclei

    Full text link
    A Multi-Channel Algebraic Scattering (MCAS) approach has been used to analyze the spectra of two hyper-nuclear systems, Lambda-9Be and Lambda-13C. The splitting of the two odd-parity excited levels (1/2^- and 3/2^-) at 11 MeV excitation in Lambda-13C is driven mainly by the weak Lambda-nucleus spin-orbit force, but the splittings of the 3/2^+ and 5/2^+ levels in both Lambda-9Be and Lambda-13C have a different origin. These cases appear to be dominated by coupling to the collective 2+ states of the core nuclei. Using simple phenomenological potentials as input to the MCAS method, the observed splitting and level ordering in Lambda-9Be is reproduced with the addition of a weak spin-spin interaction acting between the hyperon and the spin of the excited target. With no such spin-spin interaction, the level ordering in Lambda-9Be is inverted with respect to that currently observed. In both hyper-nuclei, our calculations suggest that there are additional low-lying resonant states in the Lambda-nucleus continua.Comment: 15 pages, 3 figures, 6 tables. To be published in International Journal of Modern Physics

    Non-localities in nucleon-nucleus potentials

    Full text link
    Two causes of non-locality inherent in nucleon-nucleus scattering are considered. They are the results of two-nucleon antisymmetry of the projectile with each nucleon in the nucleus and the dynamic polarization potential representation of channel coupling. For energies ∼40−300\sim 40 - 300 MeV, a g-folding model of the optical potential is used to show the influence of the knock-out process that is a result of the two-nucleon antisymmetry. To explore the dynamic polarization potential caused by channel coupling, a multichannel algebraic scattering model has been used for low-energy scattering.Comment: 12 pages, 11 figures, submitted to EPJ
    • …
    corecore