27 research outputs found

    Documenting the Recovery of Vascular Services in European Centres Following the Initial COVID-19 Pandemic Peak: Results from a Multicentre Collaborative Study

    Get PDF
    Objective: To document the recovery of vascular services in Europe following the first COVID-19 pandemic peak. Methods: An online structured vascular service survey with repeated data entry between 23 March and 9 August 2020 was carried out. Unit level data were collected using repeated questionnaires addressing modifications to vascular services during the first peak (March – May 2020, “period 1”), and then again between May and June (“period 2”) and June and July 2020 (“period 3”). The duration of each period was similar. From 2 June, as reductions in cases began to be reported, centres were first asked if they were in a region still affected by rising cases, or if they had passed the peak of the first wave. These centres were asked additional questions about adaptations made to their standard pathways to permit elective surgery to resume. Results: The impact of the pandemic continued to be felt well after countries’ first peak was thought to have passed in 2020. Aneurysm screening had not returned to normal in 21.7% of centres. Carotid surgery was still offered on a case by case basis in 33.8% of centres, and only 52.9% of centres had returned to their normal aneurysm threshold for surgery. Half of centres (49.4%) believed their management of lower limb ischaemia continued to be negatively affected by the pandemic. Reduced operating theatre capacity continued in 45.5% of centres. Twenty per cent of responding centres documented a backlog of at least 20 aortic repairs. At least one negative swab and 14 days of isolation were the most common strategies used for permitting safe elective surgery to recommence. Conclusion: Centres reported a broad return of services approaching pre-pandemic “normal” by July 2020. Many introduced protocols to manage peri-operative COVID-19 risk. Backlogs in cases were reported for all major vascular surgeries

    Structural and Dynamic Implications of an Effector-induced Backbone Amide cis-trans Isomerization in Cytochrome P450cam

    No full text
    Experimental evidence has been provided for a functionally relevant cis-trans isomerization of the Ile88-Pro89 peptide bond in cytochrome P450cam (CYP101). The isomerization is proposed to be a key element of the structural reorganization leading to the catalytically competent form of CYP101 upon binding of the effector protein putidaredoxin (Pdx). A detailed comparison of the results of molecular dynamics simulations on the cis and trans conformations of substrate- and carbonmonoxy-bound ferrous CYP101 with sequence-specific Pdx-induced structural perturbations identified by nuclear magnetic resonance is presented, providing insight into the structural and dynamic consequences of the isomerization. The mechanical coupling between the Pdx binding site on the proximal face of CYP101 and the site of isomerization is described. © 2009 Elsevier Ltd. All rights reserved

    Structure and Dynamics Study of LeuT Using the Markov State Model and Perturbation Response Scanning Reveals Distinct Ion Induced Conformational States

    Get PDF
    The bacterial leucine transporter (LeuT), a close homologue of the eukaryote monoamine transporters (MATs), currently serves as a powerful template for computer simulations of MATs. Transport of the amino acid leucine through the membrane is made possible by the sodium electrochemical potential. Recent reports indicate that the substrate transport mechanism is based on structural changes such as hinge movements of key transmembrane domains. In order to further investigate the role of sodium ions in the uptake of leucine, here we present a Markov state model analysis of atomistic simulations of lipid embedded LeuT in different environments, generated by varying the presence of binding pocket sodium ions and substrate. Six metastable conformations are found, and structural differences between them along with transition probabilities are determined. We complete the analysis with the implementation of perturbation response scanning on our system, determining the most sensitive and influential regions of LeuT, in each environment. Our results show that the occupation of sites Na1 and Na2, along with the presence of the substrate, selectively influences the geometry of LeuT. In particular, the occupation of each site Na1/Na2 has strong effects (in terms of changes in influence and/or sensitivity, as compared to the case without ions) in specific regions of LeuT, and the effects are different for simultaneous occupation. Our results strengthen the rationale and provide a conformational mechanism for a putative transport mechanism in which Na2 is necessary, but may not be sufficient, to initiate and stabilize extracellular substrate access to the binding pocket

    Solution Structural Ensembles of Substrate-Free Cytochrome P450<sub>cam</sub>

    No full text
    Removal of substrate (+)-camphor from the active site of cytochrome P450<sub>cam</sub> (CYP101A1) results in nuclear magnetic resonance-detected perturbations in multiple regions of the enzyme. The <sup>1</sup>H–<sup>15</sup>N correlation map of substrate-free diamagnetic Fe­(II) CO-bound CYP101A permits these perturbations to be mapped onto the solution structure of the enzyme. Residual dipolar couplings (RDCs) were measured for <sup>15</sup>N–<sup>1</sup>H amide pairs in two independent alignment media for the substrate-free enzyme and used as restraints in solvated molecular dynamics (MD) simulations to generate an ensemble of best-fit structures of the substrate-free enzyme in solution. Nuclear magnetic resonance-detected chemical shift perturbations reflect changes in the electronic environment of the NH pairs, such as hydrogen bonding and ring current shifts, and are observed for residues in the active site as well as in hinge regions between secondary structural features. RDCs provide information about relative orientations of secondary structures, and RDC-restrained MD simulations indicate that portions of a β-rich region adjacent to the active site shift so as to partially occupy the vacancy left by removal of the substrate. The accessible volume of the active site is reduced in the substrate-free enzyme relative to the substrate-bound structure calculated using the same methods. Both symmetric and asymmetric broadening of multiple resonances observed upon substrate removal as well as localized increased errors in RDC fits suggest that an ensemble of enzyme conformations are present in the substrate-free form

    Global impact of the first coronavirus disease 2019 (COVID-19) pandemic wave on vascular services

    Get PDF
    This online structured survey has demonstrated the global impact of the COVID-19 pandemic on vascular services. The majority of centres have documented marked reductions in operating and services provided to vascular patients. In the months during recovery from the resource restrictions imposed during the pandemic peaks, there will be a significant vascular disease burden awaiting surgeons. One of the most affected specialtie
    corecore