4,538 research outputs found

    Magnetically modulated accretion in T Tauri stars

    Get PDF
    We examine how accretion on to T Tauri stars may be modulated by a time-dependent `magnetic gate' where the inner edge of the accretion disc is disrupted by a varying stellar field. We show that magnetic field variations on time-scales shorter than 10^5 yr can modulate the accretion flow, thus providing a possible mechanism both for the marked photometric variability of T Tauri stars and for the possible conversion of T Tauri stars between classical and weak line status. We thus suggest that archival data relating to the spectrophotometric variability of T Tauri stars may provide an indirect record of magnetic activity cycles in low-mass pre-main-sequence stars.Comment: LaTeX file (requires mn.sty), 4 pages, no figures or tables. To appear in MNRAS

    Civil Procedure in the Province of Quebec

    Get PDF
    Address of Hon. J. Armitage Ewing, K. C., of the Montreal, Canada, Bar, at the Annual Meeting of the Indiana State Bar Association, September 16, 1938

    Civil Procedure in the Province of Quebec

    Get PDF
    Address of Hon. J. Armitage Ewing, K. C., of the Montreal, Canada, Bar, at the Annual Meeting of the Indiana State Bar Association, September 16, 1938

    Anomalous high energy dispersion in photoemission spectra from insulating cuprates

    Full text link
    Angle resolved photoelectron spectroscopic measurements have been performed on an insulating cuprate Ca_2CuO_2Cl_2. High resolution data taken along the \Gamma to (pi,pi) cut show an additional dispersive feature that merges with the known dispersion of the lowest binding energy feature, which follows the usual strongly renormalized dispersion of ~0.35 eV. This higher energy part reveals a dispersion that is very close to the unrenormalized band predicted by band theory. A transfer of spectral weight from the low energy feature to the high energy feature is observed as the \Gamma point is approached. By comparing with theoretical calculations the high energy feature observed here demonstrates that the incoherent portion of the spectral function has significant structure in momentum space due to the presence of various energy scales.Comment: 5 pages, 3 figure

    Electronic Structure of Electron-doped Sm1.86Ce0.14CuO4: Strong `Pseudo-Gap' Effects, Nodeless Gap and Signatures of Short Range Order

    Full text link
    Angle resolved photoemission (ARPES) data from the electron doped cuprate superconductor Sm1.86_{1.86}Ce0.14_{0.14}CuO4_4 shows a much stronger pseudo-gap or "hot-spot" effect than that observed in other optimally doped nn-type cuprates. Importantly, these effects are strong enough to drive the zone-diagonal states below the chemical potential, implying that d-wave superconductivity in this compound would be of a novel "nodeless" gap variety. The gross features of the Fermi surface topology and low energy electronic structure are found to be well described by reconstruction of bands by a 2×2\sqrt{2}\times\sqrt{2} order. Comparison of the ARPES and optical data from the samesame sample shows that the pseudo-gap energy observed in optical data is consistent with the inter-band transition energy of the model, allowing us to have a unified picture of pseudo-gap effects. However, the high energy electronic structure is found to be inconsistent with such a scenario. We show that a number of these model inconsistencies can be resolved by considering a short range ordering or inhomogeneous state.Comment: 5 pages, 4 figure

    Electronic States in the Antiferromagnetic Phase of Electron-Doped High-Tc Cuprates

    Full text link
    We investigate the electronic states in the antiferromagnetic (AF) phase of electron-doped cuprates by using numerically exact diagonalization technique for a t-t'-t''-J model. When AF correlation develops with decreasing temperature, a gaplike behavior emerges in the optical conductivity. Simultaneously, the coherent motion of carriers due to the same sublattice hoppings is enhanced. We propose that the phase is characterized as an AF state with small Fermi surface around the momentum k=(\pi,0) and (0,\pi). This is a remarkable contrast to the behavior of hole-doped cuprates.Comment: RevTeX, 5 pages, 4 figures, to appear in Phys. Rev. B Brief Report

    Theory of Thermal Conductivity in High-Tc Superconductors below Tc: Comparison between Hole-Doped and Electron-Doped Systems

    Full text link
    In hole-doped high-Tc superconductors, thermal conductivity increases drastically just below Tc, which has been considered as a hallmark of a nodal gap. In contrast, such a coherence peak in thermal conductivity is not visible in electron-doped compounds, which may indicate a full-gap state such as a (d+is)-wave state. To settle this problem, we study the thermal conductivity in the Hubbard model using the fluctuation-exchange (FLEX) approximation, which predicts that the nodal d-wave state is realized in both hole-doped and electron-doped compounds. The contrasting behavior of thermal conductivity in both compounds originates from the differences in the hot/cold spot structure. In general, a prominent coherence peak in thermal conductivity appears in line-node superconductors only when the cold spot exists on the nodal line.Comment: 5 pages, to be published in J. Phys. Soc. Jpn. Vol.76 No.

    Superconducting Gap Anisotropy in Nd1.85_{1.85}Ce0.15_{0.15}CuO4_4: Results from Photoemission

    Full text link
    We have performed angle resolved photoelectron spectroscopy on the electron doped cuprate superconductor Nd1.85_{1.85}Ce0.15_{0.15}CuO4_4. A comparison of the leading edge midpoints between the superconducting and normal states reveals a small, but finite shift of 1.5-2 meV near the (π\pi,0) position, but no observable shift along the zone diagonal near (π\pi/2,π\pi/2). This is interpreted as evidence for an anisotropic superconducting gap in the electron doped materials, which is consistent with the presence of d-wave superconducting order in this cuprate superconductor.Comment: 5 pages, 4 figures, RevTex, to be published in Phys. Rev. Let

    Fast Pixel Space Convolution for CMB Surveys with Asymmetric Beams and Complex Scan Strategies: FEBeCoP

    Full text link
    Precise measurement of the angular power spectrum of the Cosmic Microwave Background (CMB) temperature and polarization anisotropy can tightly constrain many cosmological models and parameters. However, accurate measurements can only be realized in practice provided all major systematic effects have been taken into account. Beam asymmetry, coupled with the scan strategy, is a major source of systematic error in scanning CMB experiments such as Planck, the focus of our current interest. We envision Monte Carlo methods to rigorously study and account for the systematic effect of beams in CMB analysis. Toward that goal, we have developed a fast pixel space convolution method that can simulate sky maps observed by a scanning instrument, taking into account real beam shapes and scan strategy. The essence is to pre-compute the "effective beams" using a computer code, "Fast Effective Beam Convolution in Pixel space" (FEBeCoP), that we have developed for the Planck mission. The code computes effective beams given the focal plane beam characteristics of the Planck instrument and the full history of actual satellite pointing, and performs very fast convolution of sky signals using the effective beams. In this paper, we describe the algorithm and the computational scheme that has been implemented. We also outline a few applications of the effective beams in the precision analysis of Planck data, for characterizing the CMB anisotropy and for detecting and measuring properties of point sources.Comment: 26 pages, 15 figures. New subsection on beam/PSF statistics, new and better figures, more explicit algebra for polarized beams, added explanatory text at many places following referees comments [Accepted for publication in ApJS
    corecore