278 research outputs found
Wood County Project Connect: Final Report for Event Held October 14, 2015
On October 14, 2015, Wood County, Ohio held its third Project Connect (PC) event at St. Mark’s Lutheran Church in Bowling Green, Ohio. Project Connect is designed to provide immediate goods and services to homeless individuals and those nearing homelessness. PC provides basic needs and critical services in one day at one location. Along with providing valuable and necessary services to help alleviate homelessness, an additional positive outcome for service providers is the opportunity to network with different agency members, and reinforce relationships, collaborations, and partnerships. This report presents the descriptives about the guests, providers, and volunteers at the event, as well as their feedback
Plasmas in Saturn's magnetosphere
The solar wind plasma analyzer on board Pioneer 2 provides first observations of low-energy positive ions in the magnetosphere of Saturn. Measurable intensities of ions within the energy-per-unit charge (E/Q) range 100 eV to 8 keV are present over the planetocentric radial distance range about 4 to 16 R sub S in the dayside magnetosphere. The plasmas are found to be rigidly corotating with the planet out to distances of at least 10 R sub S. At radial distances beyond 10 R sub S, the bulk flows appear to be in the corotation direction but with lesser speeds than those expected from rigid corotation. At radial distances beyond the orbit of Rhea at 8.8 R sub S, the dominant ions are most likely protons and the corresponding typical densities and temperatures are 0.5/cu cm and 1,000,000 K, respectively, with substantial fluctuations. It is concluded that the most likely source of these plasmas in the photodissociation of water frost on the surface of the ring material with subsequent ionization of the products and radially outward diffusion. The presence of this plasma torus is expected to have a large influence on the dynamics of Saturn's magnetosphere since the pressure ratio beta of these plasmas approaches unity at radial distances as close to the planet as 6.5 R sub S. On the basis of these observational evidences it is anticipated that quasi-periodic outward flows of plasma, accompanied with a reconfiguration of the magnetosphere beyond about 6.5 R sub S, will occur in the local night sector in order to relieve the plasma pressure from accretion of plasma from the rings
A Study of Ohio\u27s Correctional Institution Inspection Committee\u27s (CIIC) Inmate Surveys
Correctional facilities have a discernible social climate, or collection of contextual properties that derive from perceptions of both staff and prisoners. These properties include the physical, organizational, social, and emotional characteristics of correctional institutions. Ohio\u27s Correctional Institution Inspection Committee (CIIC) requested research assistance to assess the validity of their adult and youth surveys, which are administered during the CIIC\u27s regular inspections of facilities. The purpose of this study was to assess the validity of these instruments and the process by which they are administered. The study builds on the existing line of research on prison social climate surveys
Control of InGaAs facets using metal modulation epitaxy (MME)
Control of faceting during epitaxy is critical for nanoscale devices. This
work identifies the origins of gaps and different facets during regrowth of
InGaAs adjacent to patterned features. Molecular beam epitaxy (MBE) near SiO2
or SiNx led to gaps, roughness, or polycrystalline growth, but metal modulated
epitaxy (MME) produced smooth and gap-free "rising tide" (001) growth filling
up to the mask. The resulting self-aligned FETs were dominated by FET channel
resistance rather than source-drain access resistance. Higher As fluxes led
first to conformal growth, then pronounced {111} facets sloping up away from
the mask.Comment: 18 pages, 7 figure
Unpacking dasymetric modelling to correct spatial bias in environmental model outputs
Complex environmental model outputs used to inform decisions often have systematic errors and are of inappropriate resolution, requiring downscaling and bias correction for local applications. Here we provide a new interpretation of dasymetric modelling (DM) as a spatial bias correction framework useful in environmental modelling. DM is based on areal interpolation where estimates of some variable at target zones are obtained from overlapping source zones using ancillary information. We explore DM by downscaling runoff output from a distributed hydrological model using two meta-models and describe the properties of the methodology in detail. Consistent with properties of linear scaling bias correction, results show that the methodology 1) reduces errors compared to the source data and meta-models, 2) improve the spatial structure of the estimates, and 3) improve the performance of the downscaled estimates, particularly where meta-models perform poorly. The framework is simple and useful in ensuring spatial coherence of downscaled products
Solar and wind energy enhances drought resilience and groundwater sustainability
Water scarcity brings tremendous challenges to achieving sustainable development of water resources, food, and energy security, as these sectors are often in competition, especially during drought. Overcoming these challenges requires balancing trade-offs between sectors and improving resilience to drought impacts. An under-appreciated factor in managing the water-food-energy (WFE) nexus is the increased value of solar and wind energy (SWE). Here we develop a trade-off frontier framework to quantify the water sustainability value of SWE through a case study in California. We identify development pathways that optimize the economic value of water in competition for energy and food production while ensuring sustainable use of groundwater. Our results indicate that in the long term, SWE penetration creates beneficial feedback for the WFE nexus: SWE enhances drought resilience and benefits groundwater sustainability, and in turn, maintaining groundwater at a sustainable level increases the added value of SWE to energy and food production
Photon-mediated interactions between quantum emitters in a diamond nanocavity
Photon-mediated interactions between quantum systems are essential for realizing quantum networks and scalable quantum information processing. We demonstrate such interactions between pairs of silicon-vacancy (SiV) color centers coupled to a diamond nanophotonic cavity. When the optical transitions of the two color centers are tuned into resonance, the coupling to the common cavity mode results in a coherent interaction between them, leading to spectrally-resolved superradiant and subradiant states. We use the electronic spin degrees of freedom of the SiV centers to control these optically-mediated interactions. Such controlled interactions will be crucial in developing cavity-mediated quantum gates between spin qubits and for realizing scalable quantum network nodes
Imagining a Safe Water Space for Danube’s Future: Engaging stakeholders for the co-creation of a Safe Operating Space for the Danube basin
On the 23 November 2023, the SOS-Water project held the first stakeholder workshop for the Danube Basin case study. As water challenges increase worldwide, exacerbated by climate change, the SOS-Water project aims to establish a Safe Operating Space (SOS) for water resources, to ensure an adequate, sustainable and clean water supply for both human activities and natural ecosystems. Funded by the European Union's Horizon Europe Framework Programme, the project uses an integrated approach that combines modeling, monitoring, and stakeholder engagement, applied to four different case studies in Europe and beyond. The Danube River basin, known for its ecological and socio-economic diversity, is one of the selected case studies.
The workshop convened key stakeholders from various freshwater-related institutions, promoting dialogue and collaboration to address the complex challenges that the basin is facing. During a day of interactive activities, stakeholders collectively identified values, objectives, and priorities essential for sustainable water management in both the entire Danube basin and the Danube Delta. Discussions underscored the need for integrated approaches that balance environmental conservation, socio-economic development, and climate adaptation.
Key outcomes include the refinement of objective hierarchy maps that reflect the stakeholder input and priorities collected during the workshop. The next steps will be the development of specific indicators for the objectives. This is followed by the weighting of goals (i.e., objectives) to be achieved through further stakeholder engagement activities and workshops, towards a co-development of the Safe Operating Space for the Danube River basin
- …