877 research outputs found
The large-scale circulations and summer drought and wetness on the Tibetan plateau
Effects of large-scale atmospheric circulation and surface temperatures on extreme dryness and wetness on the Tibetan plateau in summer are analysed using ERA-40 reanalysis and observed precipitation. The extreme cases of drought and wetness can be associated with circulation anomalies in the North Atlantic/European sector and wave trains bridging the Eurasian continent. Drought in Tibet reveals an intense high pressure anomaly over Scandinavia supported by a more south-west to north-east orientated North Atlantic stormtrack. This creates wave trains crossing Eurasia which, on their southward 'great circle route', reach south-eastern Asia where they modulate the flow north and east of the Tibetan plateau by an anticyclone cyclone dipole suppressing moisture supply from the Bay of Bengal. Wetness in Tibet is characterised by a more zonally oriented cross Atlantic stormtrack creating a low pressure anomaly over central Europe and, associated with it, a northward shift of the sub-tropical westerly and tropical easterly jet; wave trains emerging from the North Atlantic on their equatorward route have now a higher chance to reach the sub-tropical jet entrance (instead of propagating further south). Then the wave trains are re-intensified and, passing the Mediterranean Arabian Sea route to India, interact with the monsoon's western branch to lead to ample moisture supply for Tibet. Surface temperatures give indications for positive (negative) El Nino/Southern Oscillation and Indian Ocean Dipole episodes occurring in years of extreme and severe dryness (wetness) on the Tibetan plateau. A pronounced cold surface temperature anomaly in the tropical North Atlantic precedes and accompanies drought on the plateau
Minority carrier lifetime in silicon photovoltaics : the effect of oxygen precipitation
Single-crystal Czochralski silicon used for photovoltaics is typically supersaturated with interstitial oxygen at temperatures just below the melting point. Oxide precipitates therefore can form during ingot cooling and cell processing, and nucleation sites are typically vacancy-rich regions. Oxygen precipitation gives rise to recombination centres, which can reduce cell efficiencies by as much as 4% (absolute). We have studied the recombination behaviour in p-type and n-type monocrystalline silicon with a range of doping levels intentionally processed to contain oxide precipitates with a range of densities, sizes and morphologies. We analyse injection-dependent minority carrier lifetime measurements to give a full parameterisation of the recombination activity in terms of Shockley–Read–Hall statistics. We intentionally contaminate specimens with iron, and show recombination activity arises from iron segregated to oxide precipitates and surrounding defects. We find that phosphorus diffusion gettering reduces the recombination activity of the precipitates to some extent. We also find that bulk iron is preferentially gettered to the phosphorus diffused layer rather than to oxide precipitates
Analysis of local Al-doped back surface fields for high efficiency screen-printed solar cells
AbstractIn this paper, we investigate the surface recombination of local screen-printed aluminum contacts applied to rear passivated solar cells. We measure the surface recombination velocity by microwave-detected photoconductance decay measurements on test wafers with various contact geometries and compare two different aluminum pastes. The aluminum paste which is optimized for local contacts shows a deep and uniform local back surface field that results in Smet=600cm/s on 1.5Ωcm p-type silicon. In contrast, a standard Al paste for full-area metallization shows a non-uniform back surface field and a Smet of 2000cm/s on the same material. We achieve an area-averaged rear surface recombination velocity Srear=(65±20) cm/s for line contacts with a pitch of 2mm. The application of the optimized paste to screen-printed solar cells with dielectric surface passivation results in efficiencies of up to 19.2% with a Voc=655mV and a Jsc=38.4mA/cm2 on 125×125 mm2 p-type Cz silicon wafers. The internal quantum efficiency analysis reveals Srear=(70±30) cm/s which is in agreement with our lifetime results. Applying fine line screen-printing, efficiencies up to 19.4% are demonstrated
Backup and Recovery Mechanisms of Cassandra Database: A Review
Cassandra is a NoSQL database having a peer-to-peer, ring-type architecture. Cassandra offers fault-tolerance, data replication for higher availability as well as ensures no single point of failure. Given that Cassandra is a NoSQL database, it is evident that it lacks the amount of research that has gone into comparatively older and more widely and broadly used SQL databases. Cassandra’s growing popularity in recent times gives rise to the need of addressing any security-related or recovery-related concerns associated with its usage. This review paper discusses the existing deletion mechanism in Cassandra and presents some identified issues related to backup and recovery in the Cassandra database. Further, failure detection as well as handling of failures such as node failure or data center failure has been explored in the paper. In addition, several possible solutions to address backup and recovery including recovery in case of disasters have been reviewed
Monitoring and quantifying future climate projections of dryness and wetness extremes: SPI bias
The adequacy of the gamma distribution (GD) for monthly precipitation totals is reconsidered. The motivation for this study is the observation that the GD fails to represent precipitation in considerable areas of global observed and simulated data. This misrepresentation may lead to erroneous estimates of the Standardised Precipitation Index (SPI), evaluations of models, and assessments of climate change. In this study, the GD is compared to the Weibull (WD), Burr Type III (BD), exponentiated Weibull (EWD) and generalised gamma (GGD) distribution. These distributions extend the GD in terms of possible shapes (skewness and kurtosis) and the behaviour for large arguments. The comparison is based on the Akaike information criterion, which maximises information entropy and reveals a trade-off between deviation and the numbers of parameters used. We use monthly sums of observed and simulated precipitation for 12 calendar months of the year. Assessing observed and simulated data, (i) the Weibull type distributions give distinctly improved fits compared to the GD and (ii) the SPI resulting from the GD overestimates (underestimates) extreme dryness (wetness). © 2012 Author(s). CC Attribution 3.0 License
Formation rates of iron-acceptor pairs in crystalline silicon
The characteristic association time constant describing the formation of iron-acceptor pairs in crystalline silicon has been measured for samples of various p-type dopant concentrations and species (B, Ga, and In) near room temperature. The results show that the dopant species has no impact on the pairing kinetics, suggesting that the pairing process is entirely limited by iron diffusion. This conclusion was corroborated by measurement of the activation energy of pair formation, which coincides with the migration enthalpy of interstitial iron in silicon. The results also indicate that the pair-formation process occurs approximately twice as fast as predicted by a commonly used expression.This work has been supported by the Australian Research
Council and the State of Lower Saxony
The use of reinforcement learning algorithms to meet the challenges of an artificial pancreas
Blood glucose control, for example, in diabetes mellitus or severe illness, requires strict adherence to a protocol of food, insulin administration and exercise personalized to each patient. An artificial pancreas for automated treatment could boost quality of glucose control and patients' independence. The components required for an artificial pancreas are: i) continuous glucose monitoring (CGM), ii) smart controllers and iii) insulin pumps delivering the optimal amount of insulin. In recent years, medical devices for CGM and insulin administration have undergone rapid progression and are now commercially available. Yet, clinically available devices still require regular patients' or caregivers' attention as they operate in open-loop control with frequent user intervention. Dosage-calculating algorithms are currently being studied in intensive care patients [1] , for short overnight control to supplement conventional insulin delivery [2] , and for short periods where patients rest and follow a prescribed food regime [3] . Fully automated algorithms that can respond to the varying activity levels seen in outpatients, with unpredictable and unreported food intake, and which provide the necessary personalized control for individuals is currently beyond the state-of-the-art. Here, we review and discuss reinforcement learning algorithms, controlling insulin in a closed-loop to provide individual insulin dosing regimens that are reactive to the immediate needs of the patient
The effect of oxide precipitates on minority carrier lifetime in n-type silicon
Supersaturated levels of interstitial oxygen in Czochralski silicon can lead to the formation of oxide precipitates. Although beneficial from an internal gettering perspective, oxygen-related extended defects give rise to recombination which reduces minority carrier lifetime. The highest efficiency silicon solar cells are made from n-type substrates in which oxide precipitates can have a detrimental impact on cell efficiency. In order to quantify and to understand the mechanism of recombination in such materials, we correlate injection level-dependent minority carrier lifetime data measured with silicon nitride surface passivation with interstitial oxygen loss and precipitate concentration measurements in samples processed under substantially different conditions. We account for surface recombination, doping level, and precipitate morphology to present a generalised parameterisation of lifetime. The lifetime data are analysed in terms of recombination activity which is dependent on precipitate density or on the surface area of different morphologies of precipitates. Correlation of the lifetime data with interstitial oxygen loss data shows that the recombination activity is likely to be dependent on the precipitate surface area. We generalise our findings to estimate the impact of oxide precipitates with a given surface area on lifetime in both n-type and p-type silicon
Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics
Microorganisms play a fundamental role in the cycling of nutrients and energy on our planet. A common strategy for many microorganisms mediating biogeochemical cycles in anoxic environments is syntrophy, frequently necessitating close spatial proximity between microbial partners. We are only now beginning to fully appreciate the diversity and pervasiveness of microbial partnerships in nature, the majority of which cannot be replicated in the laboratory. One notable example of such cooperation is the interspecies association between anaerobic methane oxidizing archaea (ANME) and sulfate-reducing bacteria. These consortia are globally distributed in the environment and provide a significant sink for methane by substantially reducing the export of this potent greenhouse gas into the atmosphere. The interdependence of these currently uncultured microbes renders them difficult to study, and our knowledge of their physiological capabilities in nature is limited. Here, we have developed a method to capture select microorganisms directly from the environment, using combined fluorescence in situ hybridization and immunomagnetic cell capture. We used this method to purify syntrophic anaerobic methane oxidizing ANME-2c archaea and physically associated microorganisms directly from deep-sea marine sediment. Metagenomics, PCR, and microscopy of these purified consortia revealed unexpected diversity of associated bacteria, including Betaproteobacteria and a second sulfate-reducing Deltaproteobacterial partner. The detection of nitrogenase genes within the metagenome and subsequent demonstration of 15N2 incorporation in the biomass of these methane-oxidizing consortia suggest a possible role in new nitrogen inputs by these syntrophic assemblages
- …