39 research outputs found

    Lymphomes malins non-hodgkiniens primitifs des amygdales palatines

    Get PDF
    Introduction: The most predominant localization for extranodal  non-hodgkinien lymphoma (NHL) in the head and neck region is the tonsil. The vast majority of NHL at this site is B-cell lymphomas.Materials and methods: The authors presented three cases of primary Non Hodgkin's Lymphoma of the tonsil, treated between 1995 and 2007Results: we report the cases of three men aged respectively 15, 42 and 72 years. They complained of a persistent odynophagia during three months ago. Clinical examination detected unilateral enlarged tonsil with ulcerated surface. All of them have bilateral tonsillectomy. The histopathologic examination concluded at a NHL with a B phenotype. The treatment consisted on chemotherapy for two patients and on radio and  chemotherapy for the third patient. We have noted one death for our three patients.Conclusion: Primary NHL of the tonsil is rare. An advanced diagnosis is often difficult. Both histopathologic identification of the tumor and evaluation of the patient are essentiel for the therapeutic decision. Prognostic depends on the stage of the lymphoma.Keywords: Non Hodgkin lymphoma, Oral cavity, Radiotherapy, Chemotherapy, antineoplastic agent, malignant hemopathy, Oral cavity disease

    Mechanical Behavior of a Novel Nanocomposite Polysulphone - Carbon Nanotubes Membrane for Water Treatment

    Get PDF
    Nowadays, global fresh water shortage is becoming the most serious problem affecting the economic and social development. Water treatment including seawater desalination and wastewater treatment is the main technology for producing fresh water. Membrane technology is favored over other approaches for water treatment due to its promising high efficiency, ease of operation, chemicals free, energy and space saving. Membrane filtration for water treatment has increased significantly in the past few decades with the enhanced membrane quality and decreased membrane costs. In addition to high permeate flux and high contaminant rejection, membranes for water treatment require good mechanical durability and good chemical and fouling resistances. Thus, investigation of the mechanical behavior of water treatment membranes with underlying deformation mechanisms is critical not only for membrane structure design but also for their reliability and lifetime prediction. Compared to ceramic and metallic membranes, polymer membranes with smaller pore size and higher efficiency for particle removal are widely used in seawater desalination with a high applied pressure. However, polymer membranes are mechanically weaker and have lower thermal and chemical stability compared to inorganic membranes. Blending of polymers with inorganic fillers is an effective method to introduce advanced properties to polymer based membranes to meet the requirements of many practical applications. The reinforced polymeric membranes with inorganic fillers can provide desirable mechanical strength as well as mechanical stability. Carbon nanotubes (CNTs) have received considerable attention from academic and industries over the last twenty years. In addition to their excellent electrical and thermal properties, CNTs exhibit outstanding mechanical characteristics due to its instinct mechanical strength and high aspect ratio. For the application of water treatment membranes, CNTs could be the excellent channels for water to go through and therefore, CNTs have proven to be excellent fillers in polymer membranes improving the permeability and rejection properties. In literature, it is reported that the mechanical strength of the polymer membranes was improved with the embedding of CNTs due to reinforcement effect of the more rigid CNTs. The mechanical responses of polymer_CNTs composites depended on the interfacial adhesion between the CNTs and the membrane-based polymer as well as the dispersion and distribution of the CNTs within the polymer matrix. In this study, a vertical chemical vapor deposition reactor was designed in order to synthesize CNTs of high aspect ratio using continues injection atomization. Bundles of high purity (99%) and high quality CNTs were produced by this system. The produced CNTs had diameters ranging from 20 to 50 nm and lengths ranging from 300 to 500 micron (corresponded aspect ratios ranging from 6000 to 25000). A novel polysulphone (PSF) based nanocomposite membrane incorporated with the produced high aspect ratio CNTs was then casted via phase inversion method, at a wide range of CNTs loading (0-5 wt. %), in polysulphone-dimethylformamide solutions using the Philos casting system. The poly(vinylpyrrolidone) was used as pore-forming additive. To demonstrate the effect of nanocomposite morphology on the mechanical behavior of the prepared membranes, a set of control samples consisted of PSF membranes embedded with commercial CNTs at the same CNTs loading, were casted at the same conditions. The commercial CNTs had a lengths of 1 ?m to 10 ?m and outer diameters of 10 nm to 20 nm (corresponded aspect ratios ranging from 50 to 1000), with purity >95% and BET surface area of 156 m2/g. The effects of CNTs content and aspect ratio on morphological, water transport and mechanical properties of the prepared PSF-based porous membranes were investigated. The surface and cross-section morphologies of PSF/CNTs porous membranes were examined using scanning electron microscopy (SEM). The orientation, dispersion and distribution of CNTs within polymer membranes were evaluated for the membrane samples with different CNTs content and CNTs aspect ratio. The average membrane pore size was evaluated by using SEM image analysis software. Uniaxial tensile behavior of the membranes was characterized by means of a universal material testing machine under different testing conditions. Wet specimens were carefully cut from the casted membranes by using a razor blade. Elastic, plastic and failure behaviors of the membranes are analyzed with the impacts of CNTs content and aspect ratio. The macroscopic mechanical behaviors of the membranes are correlated with their strain induced microstructure evolution by using SEM. In this, pore shape evolution, pore and CNTs orientations, neighboring pore interaction, interface between the CNTs and PSF matrix and the failure behavior of the deformed porous membranes were analyzed. The macroscopic stress-strain responses of the membranes were correlated with the microstructure of the studied nanocomposites membranes to provide a better understanding of materials' processing-microstructure-properties relationship.qscienc

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Possibilistic Independence vs Qualitative Independence

    No full text
    International audienc

    Some issues on the coherence of min-based possibilistic causal Networks

    No full text
    International audienc

    Right Atrium Thrombus and Pulmonary Artery Aneurysm in a Man with Behcet's Disease

    No full text
    corecore