603 research outputs found

    Computational Evolutionary Embryogeny

    Get PDF
    Evolutionary and developmental processes are used to evolve the configurations of 3-D structures in silico to achieve desired performances. Natural systems utilize the combination of both evolution and development processes to produce remarkable performance and diversity. However, this approach has not yet been applied extensively to the design of continuous 3-D load-supporting structures. Beginning with a single artificial cell containing information analogous to a DNA sequence, a structure is grown according to the rules encoded in the sequence. Each artificial cell in the structure contains the same sequence of growth and development rules, and each artificial cell is an element in a finite element mesh representing the structure of the mature individual. Rule sequences are evolved over many generations through selection and survival of individuals in a population. Modularity and symmetry are visible in nearly every natural and engineered structure. An understanding of the evolution and expression of symmetry and modularity is emerging from recent biological research. Initial evidence of these attributes is present in the phenotypes that are developed from the artificial evolution, although neither characteristic is imposed nor selected-for directly. The computational evolutionary development approach presented here shows promise for synthesizing novel configurations of high-performance systems. The approach may advance the system design to a new paradigm, where current design strategies have difficulty producing useful solutions

    Hierarchical modularity: Decomposition of function structures with the minimal description length principle

    Get PDF
    In engineering design and analysis, complex systems often need to be decomposed into a hierarchical combination of different simple subsystems. It's necessary to provide formal, computable methods to hierarchically decompose complex structures. Since graph structures are commonly used as modeling methods in engineering practice, this paper presents a method to hierarchically decompose graph structures. The Minimal Description Length (MDL) principle is introduced as a measure to compare different decompositions. The best hierarchical decomposition is searched by, evolutionary computation methods with newly defined crossover and mutation operators of tree structures. The results on abstract graph without attributes and a real function structure show that the technique is promising

    Anticyclonic atmospheric circulation as an analogue for the warm and dry mid-Holocene summer climate in central Scandinavia

    Get PDF
    Climate reconstructions from central Scandinavia suggest that annual and summer temperatures were rising during the early Holocene and reached their maximum after 8000 cal yr BP. The period with highest temperatures was characterized by increasingly low lake-levels and dry climate, with driest and warmest conditions at about 7000 to 5000 cal yr BP. We compare the reconstructed climate pattern with simulations of a climate model for the last 9000 years and show that the model, which is predominantly driven by solar insolation patterns, suggests less prominent mid-Holocene dry and warm period in Scandinavia than the reconstructions. As an additional explanation for the reconstructed climate, we argue that the trend from the moist early Holocene towards dry and warm mid-Holocene was caused by a changing atmospheric circulation pattern with a mid-Holocene dominance of summer-time anticyclonic circulation. An extreme case of the anticyclonic conditions is the persistent blocking high, an atmospheric pressure pattern that at present often causes long spells of particularly dry and warm summer weather, or "Indian summers". The argument is tested with daily instrumental temperature and precipitation records in central Sweden and an objective circulation classification based on surface air pressure over the period 1900–2002. We conclude that the differences between the precipitation and temperature climates under anticyclonic and non-anticyclonic conditions are significant. Further, warm and dry combination, as indicated by mid-Holocene reconstructions, is a typical pattern under anticyclonic conditions. These results indicate that the presented hypothesis for the mid-Holocene climate is likely valid

    Engineering by fundamental elements of evolution

    Get PDF
    The method presented in this note mimics two fundamental mechanisms from nature, growth, and development, for the synthesis of new three-dimensional structures. The structures were synthesized to support a load generated by a wind. Every structure grows from a single artificial cell following a set of genes, encoded in an artificial genome shared by all cells. Genes are a set of commands that control the growth process. Genes are regulated by interaction with the environment. The environment is both external and internal to the structure. The performance each structure is measured by its ability to hold the load and other additional engineering criteria. A population of structures is evolved using a genetic algorithm, which alters the genome of two mating individuals. We will present evolved phenotypes with high degrees of modularity and symmetry which evolved according to engineering criteria. Neither one of these two characteristics has been directly imposed as the fitness evaluation, but rather spontaneously emerge as a consequence of natural selection. We will argue that the types of rules we are using in this model are not biased toward any of these characteristics, but rather basic rules for growth and development

    An investigation into the structure of genomes within an evolution that uses embryogenesis

    Get PDF
    Evolutionary algorithms that use embryogenesis in the creation of individuals have several desirable qualities. Such algorithms are able to create complex, modular designs which can scale well to large problems. However, the inner workings of developmental algorithms have not been investigated as thoroughly as their direct-encoding counterparts. More precisely, it would be beneficial to look at how the rules used during embryogenesis evolve alongside the phenotypes they produced. This paper reports on such an investigation into the evolution of a rule set for the growth of an artificial neural network, and identifies several aspects that are desirable for the genomes of a developmental evolutionary algorithm
    corecore