911 research outputs found

    EFFECT OF RACCOON (PROCYON LOTOR) REDUCTION ON BLANDING’S TURTLE (EMYDOIDEA BLANDINGII) NEST SUCCESS

    Get PDF
    The Lake County Forest Preserve District has monitored a state-endangered Blanding’s Turtle (Emydoidea blandingii) population at two adjoining nature preserves along the Illinois–Wisconsin border since 2004. Prior to predator management, 92.3% of documented and unprotected natural Blanding’s Turtle nests (12 of 13) and 88% of monitored artificial nests have been at least partially depredated. The goal of this study was to determine the efficacy of subsidized Raccoon (Procyon lotor) removal efforts in increasing the nest success of Blanding’s Turtles. During April–May 2013 and 2014, we captured and euthanized 78 Raccoons from our 2 km2 study area. We estimated pre-removal abundance estimates using the Leslie depletion method; it appeared that we removed 83–89% of the Raccoons from the study area each year and pre-removal density estimates were 37.5% lower in 2014 than 2013. During the study period, we monitored 22 Blanding’s Turtle in situ unprotected nests. In 2013, one of seven (14%) Blanding’s Turtle nests was partially depredated and no nests were completely depredated, indicative of a successful impact of Raccoon removal on Blanding’s Turtle nest success. However in 2014, nine of 15 (60%) Blanding’s Turtle nests were depredated. Our results provide some evidence that removal of Raccoons may have increased Blanding’s Turtle nest success but other factors, such as a functional response of surviving Raccoons or depredation by other subsidized predators may be contributing to decreased nest success

    Electrical transport properties of bulk MgB2 materials synthesized by the electrolysis on fused mixtures of MgCl2, NaCl, KCl and MgB2O4

    Full text link
    Electrolysis was carried out on fused mixtures of MgCl2, NaCl, KCl and MgB2O4 under an Ar flow at 600C. Electrical resistivity measurements for the grown deposits show an onset of superconducting transition at 37 K in the absence of applied magnetic field. The resistivity decreases down to zero below 32 K. From an applied-field dependence of resistivity, an upper critical field and a coherence length were calculated to be 9.7 T and 5.9 nm at 0 K, respectively

    Improved Current Densities in MgB2 By Liquid-Assisted Sintering

    Full text link
    Polycrystalline MgB2 samples with GaN additions were prepared by reaction of Mg, B, and GaN powders. The presence of Ga leads to a low melting eutectic phase which allowed liquid phase sintering and produces plate-like grains. For low-level GaN additions (5% at. % or less), the critical transition temperature, Tc, remained unchanged and in 1T magnetic field, the critical current density, Jc was enhanced by a factor of 2 and 10, for temperatures of \~5K and 20K, respectively. The values obtained are approaching those of hot isostatically pressed samples.Comment: 12 pages, 1 table, 4 figures, accepted in Applied Physics Letter

    Interactions of the Gasotransmitters Contribute to Microvascular Tone (Dys)regulation in the Preterm Neonate

    Get PDF
    Background & Aims Hydrogen sulphide (H2S), nitric oxide (NO), and carbon monoxide (CO) are involved in transitional microvascular tone dysregulation in the preterm infant; however there is conflicting evidence on the interaction of these gasotransmitters, and their overall contribution to the microcirculation in newborns is not known. The aim of this study was to measure the levels of all 3 gasotransmitters, characterise their interrelationships and elucidate their combined effects on microvascular blood flow. Methods 90 preterm neonates were studied at 24h postnatal age. Microvascular studies were performed by laser Doppler. Arterial COHb levels (a measure of CO) were determined through co-oximetry. NO was measured as nitrate and nitrite in urine. H2S was measured as thiosulphate by liquid chromatography. Relationships between levels of the gasotransmitters and microvascular blood flow were assessed through partial correlation controlling for the influence of gestational age. Structural equation modelling was used to examine the combination of these effects on microvascular blood flow and derive a theoretical model of their interactions. Results No relationship was observed between NO and CO (p = 0.18, r = 0.18). A positive relationship between NO and H2S (p = 0.008, r = 0.28) and an inverse relationship between CO and H2S (p = 0.01, r = -0.33) exists. Structural equation modelling was used to examine the combination of these effects on microvascular blood flow. The model with the best fit is presented. Conclusions The relationships between NO and H2S, and CO and H2S may be of importance in the preterm newborn, particularly as NO levels in males are associated with higher H2S levels and higher microvascular blood flow and CO in females appears to convey protection against vascular dysregulation. Here we present a theoretical model of these interactions and their overall effects on microvascular flow in the preterm newborn, upon which future mechanistic studies may be based.The authors would like to acknowledge the parents of the neonates enrolled in the 2CANS study for their participation, the staff of the Kaleidoscope Neonatal Intensive Care Unit at the John Hunter Children’s Hospital, and Kimberly-Clark Australia for providing the diapers used in this stud

    Temperature and Field Dependence of the Energy Gap of MgB2/Pb planar junction

    Full text link
    We have constructed MgB2/Pb planar junctions for both temperature and field dependence studies. Our results show that the small gap is a true bulk property of MgB2 superconductor, not due to surface effects. The temperature dependence of the energy gap manifests a nearly BCS-like behavior. Analysis of the effect of magnetic field on junctions suggests that the energy gap of MgB2 depends non-linearly on the magnetic field. Moreover, MgB2 has an upper critical field of 15 T, in agreement with some reported Hc2 from transport measurements.Comment: 5 pages, 5 figures. Submitted to Phys. Rev.

    Octupole strength in the neutron-rich calcium isotopes

    Full text link
    Low-lying excited states of the neutron-rich calcium isotopes 4852^{48-52}Ca have been studied via γ\gamma-ray spectroscopy following inverse-kinematics proton scattering on a liquid hydrogen target using the GRETINA γ\gamma-ray tracking array. The energies and strengths of the octupole states in these isotopes are remarkably constant, indicating that these states are dominated by proton excitations.Comment: 15 pages, 3 figure
    corecore