9,814 research outputs found

    On the surface critical behaviour in Ising strips: density-matrix renormalization-group study

    Full text link
    Using the density-matrix renormalization-group method we study the surface critical behaviour of the magnetization in Ising strips in the subcritical region. Our results support the prediction that the surface magnetization in the two phases along the pseudo-coexistence curve also behaves as for the ordinary transition below the wetting temperature for the finite value of the surface field.Comment: 15 pages, 9 figure

    Boundary critical behavior at m-axial Lifshitz points for a boundary plane parallel to the modulation axes

    Full text link
    The critical behavior of semi-infinite dd-dimensional systems with nn-component order parameter ϕ\bm{\phi} and short-range interactions is investigated at an mm-axial bulk Lifshitz point whose wave-vector instability is isotropic in an mm-dimensional subspace of Rd\mathbb{R}^d. The associated mm modulation axes are presumed to be parallel to the surface, where 0md10\le m\le d-1. An appropriate semi-infinite ϕ4|\bm{\phi}|^4 model representing the corresponding universality classes of surface critical behavior is introduced. It is shown that the usual O(n) symmetric boundary term ϕ2\propto \bm{\phi}^2 of the Hamiltonian must be supplemented by one of the form λ˚α=1m(ϕ/xα)2\mathring{\lambda} \sum_{\alpha=1}^m(\partial\bm{\phi}/\partial x_\alpha)^2 involving a dimensionless (renormalized) coupling constant λ\lambda. The implied boundary conditions are given, and the general form of the field-theoretic renormalization of the model below the upper critical dimension d(m)=4+m/2d^*(m)=4+{m}/{2} is clarified. Fixed points describing the ordinary, special, and extraordinary transitions are identified and shown to be located at a nontrivial value λ\lambda^* if ϵd(m)d>0\epsilon\equiv d^*(m)-d>0. The surface critical exponents of the ordinary transition are determined to second order in ϵ\epsilon. Extrapolations of these ϵ\epsilon expansions yield values of these exponents for d=3d=3 in good agreement with recent Monte Carlo results for the case of a uniaxial (m=1m=1) Lifshitz point. The scaling dimension of the surface energy density is shown to be given exactly by d+m(θ1)d+m (\theta-1), where θ=νl4/νl2\theta=\nu_{l4}/\nu_{l2} is the anisotropy exponent.Comment: revtex4, 31 pages with eps-files for figures, uses texdraw to generate some graphs; to appear in PRB; v2: some references and additional remarks added, labeling in figure 1 and some typos correcte

    Inequalities for nucleon generalized parton distributions with helicity flip

    Full text link
    Several positivity bounds are derived for generalized parton distributions (GPDs) with helicity flip.Comment: 20 page

    Surface critical behavior of driven diffusive systems with open boundaries

    Full text link
    Using field theoretic renormalization group methods we study the critical behavior of a driven diffusive system near a boundary perpendicular to the driving force. The boundary acts as a particle reservoir which is necessary to maintain the critical particle density in the bulk. The scaling behavior of correlation and response functions is governed by a new exponent eta_1 which is related to the anomalous scaling dimension of the chemical potential of the boundary. The new exponent and a universal amplitude ratio for the density profile are calculated at first order in epsilon = 5-d. Some of our results are checked by computer simulations.Comment: 10 pages ReVTeX, 6 figures include

    Boundary critical behaviour at mm-axial Lifshitz points: the special transition for the case of a surface plane parallel to the modulation axes

    Full text link
    The critical behaviour of dd-dimensional semi-infinite systems with nn-component order parameter ϕ\bm{\phi} is studied at an mm-axial bulk Lifshitz point whose wave-vector instability is isotropic in an mm-dimensional subspace of Rd\mathbb{R}^d. Field-theoretic renormalization group methods are utilised to examine the special surface transition in the case where the mm potential modulation axes, with 0md10\leq m\leq d-1, are parallel to the surface. The resulting scaling laws for the surface critical indices are given. The surface critical exponent ηsp\eta_\|^{\rm sp}, the surface crossover exponent Φ\Phi and related ones are determined to first order in \epsilon=4+\case{m}{2}-d. Unlike the bulk critical exponents and the surface critical exponents of the ordinary transition, Φ\Phi is mm-dependent already at first order in ϵ\epsilon. The \Or(\epsilon) term of ηsp\eta_\|^{\rm sp} is found to vanish, which implies that the difference of β1sp\beta_1^{\rm sp} and the bulk exponent β\beta is of order ϵ2\epsilon^2.Comment: 21 pages, one figure included as eps file, uses IOP style file

    Effects of surfaces on resistor percolation

    Full text link
    We study the effects of surfaces on resistor percolation at the instance of a semi-infinite geometry. Particularly we are interested in the average resistance between two connected ports located on the surface. Based on general grounds as symmetries and relevance we introduce a field theoretic Hamiltonian for semi-infinite random resistor networks. We show that the surface contributes to the average resistance only in terms of corrections to scaling. These corrections are governed by surface resistance exponents. We carry out renormalization group improved perturbation calculations for the special and the ordinary transition. We calculate the surface resistance exponents \phi_{\mathcal S \mathnormal} and \phi_{\mathcal S \mathnormal}^\infty for the special and the ordinary transition, respectively, to one-loop order.Comment: 19 pages, 3 figure

    Kinematics of massive star ejecta in the Milky Way as traced by 26^26Al

    Get PDF
    Context. Massive stars form in groups and their winds and supernova explosions create superbubbles up to kpc in size. The fate of their ejecta is of vital importance for the dynamics of the interstellar medium, for chemical evolution models, and the chemical enrichment of galactic halos and the intergalactic medium. However, ejecta kinematics and the characteristic scales in space and time have not been explored in great detail beyond ~10 Ka. Aims: Through measurement of radioactive 26Al with its decay time constant at ~106 years, we aim to trace the kinematics of cumulative massive-star and supernova ejecta independent of the uncertain gas parameters over million-year time scales. Our goal is to identify the mixing time scale and the spatio-kinematics of such ejecta from the pc to kpc scale in our Milky Way. Methods: We use the SPI spectrometer on the INTEGRAL observatory and its observations along the Galactic ridge to trace the detailed line shape systematics of the 1808.63 keV gamma-ray line from 26Al decay. We determine line centroids and compare these to Doppler shift expectations from large-scale systematic rotation around the Galaxy centre, as observed in other Galactic objects. Results: We measure the radial velocities of gas traced by 26Al, averaged over the line of sight, as a function of Galactic longitude. We find substantially higher velocities than expected from Galactic rotation, the average bulk velocity being ~200 km s-1 larger than predicted from Galactic rotation. The observed radial velocity spread implies a Doppler broadening of the gamma-ray line that is consistent with our measurements of the overall line width. We can reproduce the observed characteristics with 26Al sources located along the inner spiral arms, when we add a global blow-out preference into the forward direction away from arms into the inter-arm region, as is expected when massive stars are offset towards the spiral-arm leading edge. With the known connection of superbubbles to the gaseous halo, this implies angular-momentum transfer in the disk-halo system and consequently also radial gas flows. The structure of the interstellar gas above the disk affects how ionizing radiation may escape and ionize intergalactic gas.Peer reviewe

    Relations between generalized and transverse momentum dependent parton distributions

    Get PDF
    Recent work suggests non-trivial relations between generalized parton distributions on the one hand and (naive time-reversal odd) transverse momentum dependent distributions on the other. Here we review the present knowledge on such type of relations. Moreover, as far as spectator model calculations are concerned, the existing results are considerably extended. While various relations between the two types of parton distributions can be found in the framework of spectator models, so far no non-trivial model-independent relations have been established.Comment: 25 pages, 9 figures; Eq. (B17) and typos corrected, identical with journal versio

    Spin transport in magnetic multilayers

    Full text link
    We study by extensive Monte Carlo simulations the transport of itinerant spins travelling inside a multilayer composed of three ferromagnetic films antiferromagnetically coupled to each other in a sandwich structure. The two exterior films interact with the middle one through non magnetic spacers. The spin model is the Ising one and the in-plane transport is considered. Various interactions are taken into account. We show that the current of the itinerant spins going through this system depends strongly on the magnetic ordering of the multilayer: at temperatures TT below (above) the transition temperature TcT_c, a strong (weak) current is observed. This results in a strong jump of the resistance across TcT_c. Moreover, we observe an anomalous variation, namely a peak, of the spin current in the critical region just above TcT_c. We show that this peak is due to the formation of domains in the temperature region between the low-TT ordered phase and the true paramagnetic disordered phase. The existence of such domains is known in the theory of critical phenomena. The behavior of the resistance obtained here is compared to a recent experiment. An excellent agreement with our physical interpretation is observed. We also show and discuss effects of various physical parameters entering our model such as interaction range, strength of electric and magnetic fields and magnetic film and non magnetic spacer thicknesses.Comment: 8 pages, 17 figures, submitted to J. Phys.: Cond Matte

    Surface critical behavior of random systems at the ordinary transition

    Full text link
    We calculate the surface critical exponents of the ordinary transition occuring in semi-infinite, quenched dilute Ising-like systems. This is done by applying the field theoretic approach directly in d=3 dimensions up to the two-loop approximation, as well as in d=4ϵd=4-\epsilon dimensions. At d=4ϵd=4-\epsilon we extend, up to the next-to-leading order, the previous first-order results of the ϵ\sqrt{\epsilon} expansion by Ohno and Okabe [Phys.Rev.B 46, 5917 (1992)]. In both cases the numerical estimates for surface exponents are computed using Pade approximants extrapolating the perturbation theory expansions. The obtained results indicate that the critical behavior of semi-infinite systems with quenched bulk disorder is characterized by the new set of surface critical exponents.Comment: 11 pages, 11 figure
    corecore