76 research outputs found

    A meta-analysis of cambium phenology and growth: linear and non-linear patterns in conifers of the northern hemisphere

    Get PDF
    Background and Aims Ongoing global warming has been implicated in shifting phenological patterns such as the timing and duration of the growing season across a wide variety of ecosystems. Linear models are routinely used to extrapolate these observed shifts in phenology into the future and to estimate changes in associated ecosystem properties such as net primary productivity. Yet, in nature, linear relationships may be special cases. Biological processes frequently follow more complex, non-linear patterns according to limiting factors that generate shifts and discontinuities, or contain thresholds beyond which responses change abruptly. This study investigates to what extent cambium phenology is associated with xylem growth and differentiation across conifer species of the northern hemisphere. Methods Xylem cell production is compared with the periods of cambial activity and cell differentiation assessed on a weekly time scale on histological sections of cambium and wood tissue collected from the stems of nine species in Canada and Europe over 1-9 years per site from 1998 to 2011. Key Results The dynamics of xylogenesis were surprisingly homogeneous among conifer species, although dispersions from the average were obviously observed. Within the range analysed, the relationships between the phenological timings were linear, with several slopes showing values close to or not statistically different from 1. The relationships between the phenological timings and cell production were distinctly non-linear, and involved an exponential pattern Conclusions The trees adjust their phenological timings according to linear patterns. Thus, shifts of one phenological phase are associated with synchronous and comparable shifts of the successive phases. However, small increases in the duration of xylogenesis could correspond to a substantial increase in cell production. The findings suggest that the length of the growing season and the resulting amount of growth could respond differently to changes in environmental condition

    Plasticity in dendroclimatic response across the distribution range of Aleppo pine (Pinus halepensis)

    Get PDF
    We investigated the variability of the climate-growth relationship of Aleppo pine across its distribution range in the Mediterranean Basin. We constructed a network of tree-ring index chronologies from 63 sites across the region. Correlation function analysis identified the relationships of tree-ring index to climate factors for each site. We also estimated the dominant climatic gradients of the region using principal component analysis of monthly, seasonal, and annual mean temperature and total precipitation from 1,068 climatic gridpoints. Variation in ring width index was primarily related to precipitation and secondarily to temperature. However, we found that the dendroclimatic relationship depended on the position of the site along the climatic gradient. In the southern part of the distribution range, where temperature was generally higher and precipitation lower than the regional average, reduced growth was also associated with warm and dry conditions. In the northern part, where the average temperature was lower and the precipitation more abundant than the regional average, reduced growth was associated with cool conditions. Thus, our study highlights the substantial plasticity of Aleppo pine in response to different climatic conditions. These results do not resolve the source of response variability as being due to either genetic variation in provenance, to phenotypic plasticity, or a combination of factors. However, as current growth responses to inter-annual climate variability vary spatially across existing climate gradients, future climate-growth relationships will also likely be determined by differential adaptation and/or acclimation responses to spatial climatic variation. The contribution of local adaptation and/or phenotypic plasticity across populations to the persistence of species under global warming could be decisive for prediction of climate change impacts across populations. In this sense, a more complex forest dynamics modeling approach that includes the contribution of genetic variation and phenotypic plasticity can improve the reliability of the ecological inferences derived from the climate-growth relationships.This work was partially supported by Spanish Ministry of Education and Science co-funded by FEDER program (CGL2012-31668), the European Union and the National Ministry of Education and Religion of Greece (EPEAEK- Environment – Archimedes), the Slovenian Research Agency (program P4-0015), and the USDA Forest Service. The cooperation among international partners was supported by the COST Action FP1106, STREeSS

    The climate sensitivity of Norway spruce [Picea abies (L.) Karst.] in the southeastern European Alps

    Get PDF
    Tree ring chronologies were developed from trees growing at two sites in Slovenia which differed in their ecological and climatological characteristics. Ring width, maximum latewood density, annual height increment and latewood cellulose carbon isotope composition were developed at both sites and time-series verified against instrumental climate data over the period (AD 1960–AD 2002). Ring width sensitivity to summer temperature is site-dependent, with contrasting responses at alpine and lowland sites. Maximum density responds to September temperatures, suggesting lignification after cell division has ended for the season. Stable carbon isotopes have great potential, responding to summer temperature at oth alpine and lowland stands. Height increment appears relatively insensitive to climate, and is likely to be dominated by local stand dynamics

    The palaeoclimatic potential of recent oak tree-ring width chronologies from southwest Ukraine

    Get PDF
    Better insights into spatio-temporal climate signals are needed to understand more clearly the applicability to palaeoclimatic analysis and dendrochronological dating of the long tree-ring oak chronologies currently being compiled in Eastern Europe. This study investigates the climate sensitivity of two recent oak tree-ring width (TRW) chronologies from Transcarpathian and Ciscarpathian Ukraine and their coherence with 35 oak chronologies from Ukraine, Poland, Slovakia, Romania, and Hungary. The new Transcarpathian chronology consists of 247 TRW series of living trees from 13 sites covering the period 1836-2020, while the new Ciscarpathian chronology consists of 215 TRW series from 13 sites and spans the period 1775-2020. Despite the strong similarity between these two chronologies, their responses to climate differ significantly. Growing-season precipitation and particularly drought (three-month SPEI index) were found to be the primary drivers of oak growth on the border between the Carpathians and the northeastern Pannonian Basin. Spatial correlations of the Transcarpathian chronology show particularly high explained variability in the April-August SPEI index, roughly between 18.5-28.5oE and 45-52oN. In the Ciscarpathian, June precipitation primarily influenced oak radial growth but the spatial correlation was quite low. While the Transcarpathian TRW chronology was strongly correlated with eastern Slovakian and northwestern Romanian chronologies, the Ciscarpathian chronology revealed very low correlations with surrounding chronologies. This study indicates the great dendroarchaeological and palaeoclimatic potential of the Transcarpathian chronology and points to the need to analyse additional living trees from the Ciscarpathian region to understand the spatial variability of oak growth and its climate signal better.Preprin

    Tree rings of Scots pine (Pinus sylvestris L.) as a source of information about past climate in northern Poland

    Get PDF
    Scots pine (Pinus sylvestris) is a very common tree in Polish forests, and therefore was widely used as timber. A relatively large amount of available wood allowed a long-term chronology to be built up and used as a source of information about past climate. The analysis of reconstructed indexed values of mean temperature in 51-year moving intervals allowed the recognition of the coldest periods in the years 1207–1346, 1383–1425, 1455–1482, 1533–1574, 1627–1646, and 1694–1785. The analysis of extreme wide and narrow rings forms a complementary method of examining climatic data within tree rings. The tree ring widths, early wood and late wood widths of 16 samples were assessed during the period 1581–1676. The most apparent effect is noted in the dry summer of 1616. According to previous research and our findings, temperature from February to March seems to be one of the most stable climatic factors which influenced pine growth in Poland. Correlation coefficients in the calibration and validation procedure gave promising results for temperature reconstruction from the pine chronology

    Overview of recent advancements in IFMIF-DONES neutronics activities

    Get PDF
    Recent advancements in the neutronics activities of the IFMIF-DONES project, developed within the EUROfusion framework, are presented. These include updates to radiation dose maps during commissioning and normal operation of the accelerator systems; material irradiation analyses and shielding optimization of the test systems; activation inventories of 7^7Be, 3^3H, and activated corrosion products in the Li systems; shutdown dose analyses of transportation and storage of radioactive waste, cooling water and atmosphere gas activations, skyshine to the public, etc. The development of simulation tools, nuclear data evaluation, and nuclear experiments for the specific needs of DONES neutronics are highlighted, as well as the nuclear analysis handbook and database. Several challenges for future development are also discussed to ensure the provision of high-quality nuclear analyses

    Variation of Maximum Tree Height and Annual Shoot Growth of Smith Fir at Various Elevations in the Sygera Mountains, Southeastern Tibetan Plateau

    Get PDF
    Little is known about tree height and height growth (as annual shoot elongation of the apical part of vertical stems) of coniferous trees growing at various altitudes on the Tibetan Plateau, which provides a high-elevation natural platform for assessing tree growth performance in relation to future climate change. We here investigated the variation of maximum tree height and annual height increment of Smith fir (Abies georgei var. smithii) in seven forest plots (30 m×40 m) along two altitudinal transects between 3,800 m and 4,200/4,390 m above sea level (a.s.l.) in the Sygera Mountains, southeastern Tibetan Plateau. Four plots were located on north-facing slopes and three plots on southeast-facing slopes. At each site, annual shoot growth was obtained by measuring the distance between successive terminal bud scars along the main stem of 25 trees that were between 2 and 4 m high. Maximum/mean tree height and mean annual height increment of Smith fir decreased with increasing altitude up to the tree line, indicative of a stress gradient (the dominant temperature gradient) along the altitudinal transect. Above-average mean minimum summer (particularly July) temperatures affected height increment positively, whereas precipitation had no significant effect on shoot growth. The time series of annual height increments of Smith fir can be used for the reconstruction of past climate on the southeastern Tibetan Plateau. In addition, it can be expected that the rising summer temperatures observed in the recent past and anticipated for the future will enhance Smith fir's growth throughout its altitudinal distribution range

    Partial asynchrony of coniferous forest carbon sources and sinks at the intra-annual time scale.

    Get PDF
    As major terrestrial carbon sinks, forests play an important role in mitigating climate change. The relationship between the seasonal uptake of carbon and its allocation to woody biomass remains poorly understood, leaving a significant gap in our capacity to predict carbon sequestration by forests. Here, we compare the intra-annual dynamics of carbon fluxes and wood formation across the Northern hemisphere, from carbon assimilation and the formation of non-structural carbon compounds to their incorporation in woody tissues. We show temporally coupled seasonal peaks of carbon assimilation (GPP) and wood cell differentiation, while the two processes are substantially decoupled during off-peak periods. Peaks of cambial activity occur substantially earlier compared to GPP, suggesting the buffer role of non-structural carbohydrates between the processes of carbon assimilation and allocation to wood. Our findings suggest that high-resolution seasonal data of ecosystem carbon fluxes, wood formation and the associated physiological processes may reduce uncertainties in carbon source-sink relationships at different spatial scales, from stand to ecosystem levels

    Low pre-death growth rates of oak (Quercus robur L.)—Is oak death a long-term process induced by dry years?

    Full text link
    Background and purpose A complex interplay between biotic and abiotic factors is believed to be responsible for several oak declines in pedunculate oak (Quercus robur L.). This study aims to clarify the temporal process of oak declines, as well as identifying individual tree and environmental variables that affects growth rate and that may increase the risk of mortality. The study was performed in southern Sweden at three sites. Findings Cross-dating revealed that most trees had died during the last decade and that the growth rates of the dead oaks were affected long before death. Averaged growth chronologies of dead and control trees reaching 150 years back in time illustrated an excellent match up until around 1992, when a severe drought occurred after which the dead trees started to express reduced growth. Precipitation the previous year during August-September and during March-June this current year was of significant importance for oak growth. Site-specific results that showed that dead trees: included fewer small-sized trees, grew on non-clay soils, were more likely to have shelf fungus and cavities and were exposed to less sunshine. Conclusion The results support the theories that oak mortality is a long process that may be induced decades before the actual death.</p
    corecore