55 research outputs found

    Zur voraussichtlichen Entwicklung des Arbeitsmarktes in der Bundesrepublik Deutschland im Jahre 1973

    Get PDF
    Der konjunkturelle Wiederaufschwung wird sich im Jahre 1973 verstärkt fortsetzen. Es kann davon ausgegangen werden, daß das reale Inlandsprodukt in der Bundesrepublik Deutschland 1973 gegenüber 1972 um 5 % zunehmen wird. Bei gleichzeitigem Anstieg der Produktivität um rund 4 1/2 % errechnet sich somit ein Mehrbedarf von rund 150 000 Erwerbstätigen (+ 1/2 %). Das inländische Erwerbspersonenpotential nimmt auch 1973 weiterhin ab. ( - 230 000 Personen ). Es werden weitere Veränderungen prognostiziert: Rückgang der Zahl der registrierten Arbeitslosen von 246 ooo im Jahresdurchschnitt 1972 auf rund 180 000, Abbau der "Stellenreserven" von 224 000 im Vorjahr auf 60 000 im Jahresdurchschnitt 1973, die Zahl der ausländischen Arbeitnehmer steigt auf 2,45 Mio. im Jahresdurchschnitt 1973 (Vorjahr 2,28 Mio.). Das gesamtwirtschaftliche Arbeitsvolumen wird um 1 % größer sein als im Vorjahr. Die Teilzeitbeschäftigung von Frauen nimmt wie in den Vorjahren um etwa 1 % zu. Der für das Bundesgebiet insgesamt prognostizierte Beschäftigungsanstieg im Jahre 1973 wird mit unterschiedlicher Intensität in allen Bundesländern zu verzeichnen sein, mit Ausnahme von Berlin (West). Die Zahl der ausländischen Arbeitnehmer wird in allen Regionen ansteigen, die Arbeitslosigkeit überall zurückgehen. Die Regionalprognose enthält erstmals eine Vorausschätzung der Beschäftigung in der Industrie insgesamt und in fünf Industriegruppen.Arbeitsmarktentwicklung, Industrie, Frauenerwerbstätigkeit, Teilzeitarbeit, Arbeitskräfteangebot, Arbeitskräftenachfrage, regionaler Arbeitsmarkt - Entwicklung

    Novel Titanium Nanospike Structure Using Low-Energy Helium Ion Bombardment for the Transgingival Part of a Dental Implant.

    Get PDF
    AIM(S) The aim of the study was to fabricate a nanospike surface on a titanium alloy surface using a newly established method of low-energy helium ion bombardment. Various methods to achieve nanospike formation on titanium have been introduced recently, and their antibacterial properties have been mainly investigated with respect to Escherichia coli and Staphylococcus aureus. Oral pathogens such as Porphyromonas gingivalis play an important role in the development of peri-implantitis. For that reason, the antibacterial properties of the novel, nanostructured titanium surface against P. gingivalis were assessed, and a possible effect on the viability of gingival fibroblasts was evaluated. MATERIALS AND METHODS Helium sputtering was employed for developing titanium surfaces with nanospikes of 500 nm (ND) in height; commercially available smooth-machined (MD) and sandblasted and acid-etched titanium disks (SLA) were used as controls. Surface structure characterization was performed through scanning electron microscopy (SEM) and atomic force microscopy (AFM). Following incubation with P. gingivalis, antibacterial properties were determined via conventional culturing and SEM. Additionally, the viability of human gingival fibroblasts (HGFs) was tested through MTT assay, and cell morphology was assessed through SEM. RESULTS SEM images confirmed the successful establishment of a nanospike surface with required heights, albeit with heterogeneity. AFM images of the 500 nm nanospike surface revealed that the roughness is dominated by large-scale hills and valleys. For frame sizes of 5 × 5 μm and smaller, the average roughness is dominated by the height of the titanium spikes. ND successfully induces dysmorphisms within P. gingivalis cultures following the incubation period, while conventional culturing reveals a 17% and 20% reduction for ND compared to MD and SLA, respectively. Moreover, the nanospike surfaces did not affect the viability of human growth fibroblasts despite their sharp surface. CONCLUSION(S) This study successfully developed a novel titanium-nanospike-based structuration technique for titanium surfaces. In addition, the nanospikes did not hinder gingival fibroblast viability. Enhanced antimicrobial effects for such a novel nanospike-based resurfacing technique can be achieved through further optimizations for nanospike spacing and height parameters

    Piranha-etched titanium nanostructure reduces biofilm formation in vitro.

    Get PDF
    OBJECTIVES Nano-modified surfaces for dental implants may improve gingival fibroblast adhesion and antibacterial characteristics through cell-surface interactions. The present study investigated how a nanocavity titanium surface impacts the viability and adhesion of human gingival fibroblasts (HGF-1) and compared its response to Porphyromonas gingivalis with those of marketed implant surfaces. MATERIAL AND METHODS Commercial titanium and zirconia disks, namely, sandblasted and acid-etched titanium (SLA), sandblasted and acid-etched zirconia (ZLA), polished titanium (PT) and polished zirconia (ZrP), and nanostructured disks (NTDs) were tested. Polished titanium disks were etched with a 1:1 combination of 98% H2SO4 and 30% H2O2 (piranha etching) for 5 h at room temperature to produce the NTDs. Atomic force microscopy was used to measure the surface topography, roughness, adhesion force, and work of adhesion. MTT assays and immunofluorescence staining were used to examine cell viability and adhesion after incubation of HGF-1 cells on the disk surfaces. After incubation with P. gingivalis, conventional culture, live/dead staining, and SEM were used to determine the antibacterial properties of NTD, SLA, ZLA, PT, and ZrP. RESULTS Etching created nanocavities with 10-20-nm edge-to-edge diameters. Chemical etching increased the average surface roughness and decreased the surface adherence, while polishing and flattening of ZrP increased adhesion. However, only the NTDs inhibited biofilm formation and bacterial adherence. The NTDs showed antibacterial effects and P. gingivalis vitality reductions. The HGF-1 cells demonstrated greater viability on the NTDs compared to the controls. CONCLUSION Nanocavities with 10-20-nm edge-to-edge diameters on titanium disks hindered P. gingivalis adhesion and supported the adhesion of gingival fibroblasts when compared to the surfaces of currently marketed titanium or zirconia dental implants. CLINICAL RELEVANCE This study prepared an effective antibacterial nanoporous surface, assessed its effects against oral pathogens, and demonstrated that surface characteristics on a nanoscale level influenced oral pathogens and gingival fibroblasts. CLINICAL TRIAL REGISTRATION not applicable

    A study on African vernacular mosque: A lesson from tradition

    Get PDF
    Mosques as a symbol of Islamic cities have a significant place in Islamic Architecture and it prompts architects to create admirable, magnificent buildings. While several studies have done on features and prototypes in this field but mainly it leaded to exaggerate dominance of dome as inseparable component of mosques. Although dome construction is costly, it is not that much adaptable to different climates and even it is not a good culture indicator of different countries, still there is a strong insist on presence of dome in mosques everywhere. This paper aims to study African mosque example which deeply relied on vernacular architecture. Various styles of design in Mali as case study investigated in terms of material, design concept, to arrive at concrete results

    KORISNOT I OPASNOST OD TRANSGENIČNIH BILJAKA

    Get PDF
    Surveying endangered species is necessary to evaluate conservation effectiveness. Camera trapping and biometric computer vision are recent technological advances. They have impacted on the methods applicable to field surveys and these methods have gained significant momentum over the last decade. Yet, most researchers inspect footage manually and few studies have used automated semantic processing of video trap data from the field. The particular aim of this study is to evaluate methods that incorporate automated face detection technology as an aid to estimate site use of two chimpanzee communities based on camera trapping. As a comparative baseline we employ traditional manual inspection of footage. Our analysis focuses specifically on the basic parameter of occurrence where we assess the performance and practical value of chimpanzee face detection software. We found that the semi-automated data processing required only 2–4% of the time compared to the purely manual analysis. This is a non-negligible increase in efficiency that is critical when assessing the feasibility of camera trap occupancy surveys. Our evaluations suggest that our methodology estimates the proportion of sites used relatively reliably. Chimpanzees are mostly detected when they are present and when videos are filmed in high-resolution: the highest recall rate was 77%, for a false alarm rate of 2.8% for videos containing only chimpanzee frontal face views. Certainly, our study is only a first step for transferring face detection software from the lab into field application. Our results are promising and indicate that the current limitation of detecting chimpanzees in camera trap footage due to lack of suitable face views can be easily overcome on the level of field data collection, that is, by the combined placement of multiple high-resolution cameras facing reverse directions. This will enable to routinely conduct chimpanzee occupancy surveys based on camera trapping and semi-automated processing of footage. RESEARCH HIGHLIGHTS Using semi-automated ape face detection technology for processing camera trap footage requires only 2–4% of the time compared to manual analysis and allows to estimate site use by chimpanzees relatively reliably

    Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes

    Full text link
    [EN] The increasing environmental concern and promotion of “green processes” are forcing the substitution of traditional acid and base homogeneous catalysts by solid ones. Among these heterogeneous catalysts, zeolites and zeotypes can be considered as real “green” catalysts, due to their benign nature from an environmental point of view. The importance of these inorganic molecular sieves within the field of heterogeneous catalysis relies not only on their microporous structure and the related shape selectivity, but also on the flexibility of their chemical composition. Modification of the zeolite framework composition results in materials with acidic, basic or redox properties, whereas multifunctional catalysts can be obtained by introducing metals by ion exchange or impregnation procedures, that can catalyze hydrogenation–dehydrogenation reactions, and the number of commercial applications of zeolite based catalysts is continuously expanding. In this review we discuss determinant issues for the development of zeolite based catalysts, going from zeolite catalyst preparation up to their industrial application. Concerning the synthesis of microporous materials we present some of the new trends moving into larger pore structures or into organic free synthesis media procedures, thanks to the incorporation of novel organic templates or alternative framework elements, and to the use of high-throughput synthesis methods. Post-synthesis zeolite modification and final catalyst conformation for industrial use are briefly discussed. In a last section we give a thorough overview on the application of zeolites in industrial processes. Some of them are well established mature technologies, such as fluid catalytic cracking, hydrocracking or aromatics alkylation. Although the number of zeolite structures commercially used as heterogeneous catalysts in these fields is limited, the development of new catalysts is a continuous challenge due to the need for processing heavier feeds or for increasing the quality of the products. The application of zeolite based catalysts in the production of chemicals and fine chemicals is an emerging field, and will greatly depend on the discovery of new or known structures by alternative, lower cost, synthesis routes, and the fine tuning of their textural properties. Finally, biomass conversion and selective catalytic reduction for conversion of NOx are two active research fields, highlighting the interest in these potential industrial applications.The authors acknowledge financial support from Ministerio de Ciencia e Innovacion (project Consolider-Ingenio 2010 MULTICAT).Martínez Sánchez, MC.; Corma Canós, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews. 255(13-14):1558-1580. doi:10.1016/j.ccr.2011.03.014S1558158025513-1
    corecore