172 research outputs found
Rolling Shutter Stereo
A huge fraction of cameras used nowadays is based on
CMOS sensors with a rolling shutter that exposes the image
line by line. For dynamic scenes/cameras this introduces
undesired effects like stretch, shear and wobble. It has been
shown earlier that rotational shake induced rolling shutter
effects in hand-held cell phone capture can be compensated
based on an estimate of the camera rotation. In contrast, we
analyse the case of significant camera motion, e.g. where
a bypassing streetlevel capture vehicle uses a rolling shutter
camera in a 3D reconstruction framework. The introduced
error is depth dependent and cannot be compensated
based on camera motion/rotation alone, invalidating also
rectification for stereo camera systems. On top, significant
lens distortion as often present in wide angle cameras intertwines
with rolling shutter effects as it changes the time
at which a certain 3D point is seen. We show that naive
3D reconstructions (assuming global shutter) will deliver
biased geometry already for very mild assumptions on vehicle
speed and resolution. We then develop rolling shutter
dense multiview stereo algorithms that solve for time of exposure
and depth at the same time, even in the presence of
lens distortion and perform an evaluation on ground truth
laser scan models as well as on real street-level data
Understanding Mn-nodule distribution and evaluation of related deep-sea mining impacts using AUV-based hydroacoustic and optical data
In this study ship- and AUV-based multibeam data from the German Mn-nodule license area in the Clarion-Clipperton Zone (CCZ; eastern Pacific) are linked to ground truth data from optical imaging. Photographs obtained by an AUV enable semi-quantitative assessments of nodule coverage at a spatial resolution in the range of meters. Together with high resolution AUV bathymetry this revealed a correlation of small-scale terrain variations ( 1.8° and concave terrain. On a more regional scale, factors such as the geological setting (existence of horst and graben structures, sediment thickness, outcropping basement) and influence of bottom currents seem to play an essential role for the spatial variation of nodule abundance and the related hard substrate habitat. AUV imagery was also successfully employed to map the distribution of re-settled sediment following a disturbance and sediment cloud generation during a sampling deployment of an Epibenthic Sledge. Data from before and after the "disturbance" allows a direct assessment of the impact. Automated image processing analyzed the nodule coverage at the seafloor, revealing nodule blanketing by resettling of suspended sediment within 16 hours after the disturbance. The visually detectable impact was spatially limited to a maximum of 100m distance from the disturbance track, downstream of the bottom water current. A correlation with high resolution AUV bathymetry reveals that the blanketing pattern varies in extent by tens of meters, strictly following the bathymetry, even in areas of only slightly undulating seafloor (< 1 m vertical change). These results highlight the importance of detailed terrain knowledge when engaging in resource assessment studies for nodule abundance estimates and defining minable areas. At the same time, it shows the importance of high resolution mapping for detailed benthic habitat studies that show a heterogeneity at scales of 10 m to 100 m. Terrain knowledge is also needed to determine the scale of the impact by seafloor sediment blanketing during mining-operations
Generic 3D Representation via Pose Estimation and Matching
Though a large body of computer vision research has investigated developing
generic semantic representations, efforts towards developing a similar
representation for 3D has been limited. In this paper, we learn a generic 3D
representation through solving a set of foundational proxy 3D tasks:
object-centric camera pose estimation and wide baseline feature matching. Our
method is based upon the premise that by providing supervision over a set of
carefully selected foundational tasks, generalization to novel tasks and
abstraction capabilities can be achieved. We empirically show that the internal
representation of a multi-task ConvNet trained to solve the above core problems
generalizes to novel 3D tasks (e.g., scene layout estimation, object pose
estimation, surface normal estimation) without the need for fine-tuning and
shows traits of abstraction abilities (e.g., cross-modality pose estimation).
In the context of the core supervised tasks, we demonstrate our representation
achieves state-of-the-art wide baseline feature matching results without
requiring apriori rectification (unlike SIFT and the majority of learned
features). We also show 6DOF camera pose estimation given a pair local image
patches. The accuracy of both supervised tasks come comparable to humans.
Finally, we contribute a large-scale dataset composed of object-centric street
view scenes along with point correspondences and camera pose information, and
conclude with a discussion on the learned representation and open research
questions.Comment: Published in ECCV16. See the project website
http://3drepresentation.stanford.edu/ and dataset website
https://github.com/amir32002/3D_Street_Vie
Enhanced Formation of Nanometric Titanium Cones by Incorporation of Titanium, Tungsten and/or Iron in a Helium Ion Beam
Surface patterning of bio-compatible titanium (Ti) shows a growing interest in the medical field. The engineering of material surfaces can achieve bactericidal properties and osteointegration improvements in order to develop medical implants. Spikes-like surface morphologies have already demonstrated the development of promising bactericidal properties. A barely new method to produce nanometric-sized cones on titanium consists of helium (He) ion irradiation using low energies ( 100 eV) and temperatures comprised between 0.25 T/T 0.5 (with T being the melting temperature of the material). Ti, iron (Fe) and/or tungsten (W) were incorporated in a He beam, and their amounts were quantified using X-ray Photoelectron Spectroscopy (XPS). The He ion energy was varied from 70 and 120 eV, the surface temperatures from 571 to 651 K for fluences approximately equal to 1024 m−2. After irradiation, the surface morphology was characterized using Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB). This study demonstrated the capability for irradiated Ti surfaces to form cones with tunable density, aspect ratio, and heights with the incorporation of Ti, Fe and/or W in a He ion. Additionally, the growth rate of the cones was enhanced by about 30 times in comparison to pure He irradiation as a function of the chosen materials introduced in the He beam
Drug-resistance mechanisms and tuberculosis drugs.
This publication presents independent research supported by the Health Innovation Challenge Fund (HICF-T5-342 and WT098600), a parallel funding partnership between the UK Department of Health and Wellcome Trust.This is the final version of the article. It first appeared at http://dx.doi.org/10.1016/S0140-6736(14)62450-8
Wild-Type and Non-Wild-Type Mycobacterium tuberculosis MIC Distributions for the Novel Fluoroquinolone Antofloxacin Compared with Those for Ofloxacin, Levofloxacin, and Moxifloxacin.
Antofloxacin (AFX) is a novel fluoroquinolone that has been approved in China for the treatment of infections caused by a variety of bacterial species. We investigated whether it could be repurposed for the treatment of tuberculosis by studying its in vitro activity. We determined the wild-type and non-wild-type MIC ranges for AFX as well as ofloxacin (OFX), levofloxacin (LFX), and moxifloxacin (MFX), using the microplate alamarBlue assay, of 126 clinical Mycobacterium tuberculosis strains from Beijing, China, of which 48 were OFX resistant on the basis of drug susceptibility testing on Löwenstein-Jensen medium. The MIC distributions were correlated with mutations in the quinolone resistance-determining regions of gyrA (Rv0006) and gyrB (Rv0005). Pharmacokinetic/pharmacodynamic (PK/PD) data for AFX were retrieved from the literature. AFX showed lower MIC levels than OFX but higher MIC levels than LFX and MFX on the basis of the tentative epidemiological cutoff values (ECOFFs) determined in this study. All strains with non-wild-type MICs for AFX harbored known resistance mutations that also resulted in non-wild-type MICs for LFX and MFX. Moreover, our data suggested that the current critical concentration of OFX for Löwenstein-Jensen medium that was recently revised by the World Health Organization might be too high, resulting in the misclassification of phenotypically non-wild-type strains with known resistance mutations as wild type. On the basis of our exploratory PK/PD calculations, the current dose of AFX is unlikely to be optimal for the treatment of tuberculosis, but higher doses could be effective.The work was supported by the research funding from Infectious Diseases Special Project, Minister of Health of China (2016ZX10003001-12) and Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support (ZYLX201304). The strains used in this project were obtained from the ‘Beijing Bio-Bank of clinical resources on Tuberculosis’ (D09050704640000), Beijing Chest Hospital. In addition, this study was supported by the Health Innovation Challenge Fund (HICF-T5-342 and WT098600), a parallel funding partnership between the UK Department of Health and Wellcome Trust. T. S. was supported by grants from the Swedish Heart and Lung Foundation and Marianne and Marcus Wallenberg Foundation. The views expressed in this publication are those of the authors and not necessarily those of the Department of Health, Public Health England, or the Wellcome Trust. C. U. K. is a Junior Research Fellow at Wolfson College, Cambridge.This is the author accepted manuscript. The final version is available from American Society for Microbiology at http://dx.doi.org/10.1128/AAC.00393-16
Healthcare-associated outbreak of meticillin-resistant Staphylococcus aureus bacteraemia: role of a cryptic variant of an epidemic clone
BACKGROUND
New strains of meticillin-resistant Staphylococcus aureus (MRSA) may be associated with changes in rates of disease or clinical presentation. Conventional typing techniques may not detect new clonal variants that underlie changes in epidemiology or clinical phenotype.
AIM
To investigate the role of clonal variants of MRSA in an outbreak of MRSA bacteraemia at a hospital in England.
METHODS
Bacteraemia isolates of the major UK lineages (EMRSA-15 and -16) from before and after the outbreak were analysed by whole-genome sequencing in the context of epidemiological and clinical data. For comparison, EMRSA-15 and -16 isolates from another hospital in England were sequenced. A clonal variant of EMRSA-16 was identified at the outbreak hospital and a molecular signature test designed to distinguish variant isolates among further EMRSA-16 strains.
FINDINGS
By whole-genome sequencing, EMRSA-16 isolates during the outbreak showed strikingly low genetic diversity (P < 1 × 10(-6), Monte Carlo test), compared with EMRSA-15 and EMRSA-16 isolates from before the outbreak or the comparator hospital, demonstrating the emergence of a clonal variant. The variant was indistinguishable from the ancestral strain by conventional typing. This clonal variant accounted for 64/72 (89%) of EMRSA-16 bacteraemia isolates at the outbreak hospital from 2006.
CONCLUSIONS
Evolutionary changes in epidemic MRSA strains not detected by conventional typing may be associated with changes in disease epidemiology. Rapid and affordable technologies for whole-genome sequencing are becoming available with the potential to identify and track the emergence of variants of highly clonal organisms
- …