632 research outputs found

    Interactions between eye movement systems in cats and humans

    Get PDF
    Eye movements can be broadly classified into target-selecting and gaze-stabilizing eye movements. How do the different systems interact under natural conditions? Here we investigate interactions between the optokinetic and the target-selecting system in cats and humans. We use combinations of natural and grating stimuli. The natural stimuli are movies and pictures taken from the cat's own point of view with a head-mounted camera while it moved about freely in an outdoor environment. We superimpose linear global motion on the stimuli and use measurements of optokinetic nystagmus as a probe to study the interaction between the different systems responsible for controlling eye movements. Cats display higher precision stabilizing eye movements in response to natural pictures as compared to drifting gratings. In contrast, humans perform similarly under these two conditions. This suggests an interaction of the optokinetic and the pursuit system. In cats, the natural movies elicit very weak optokinetic responses. In humans, by contrast, the natural movie stimuli elicit effectively stabilizing eye movements. In both species, we find a unimodal distribution of saccades for all stimulus velocities. This suggests an early interaction of target-selecting and gaze-stabilizing saccades. Thus, we argue for a more integrated view in humans of the different eye movement system

    Kondo effect in spin-orbit mesoscopic interferometers

    Get PDF
    We consider a flux-threaded Aharonov-Bohm ring with an embedded quantum dot coupled to two normal leads. The local Rashba spin-orbit interaction acting on the dot electrons leads to a spin-dependent phase factor in addition to the Aharonov-Bohm phase caused by the external flux. Using the numerical renormalization group method, we find a splitting of the Kondo resonance at the Fermi level which can be compensated by an external magnetic field. To fully understand the nature of this compensation effect, we perform a scaling analysis and derive an expression for the effective magnetic field. The analysis is based on a tight-binding model which leads to an effective Anderson model with a spin-dependent density of states for the transformed lead states. We find that the effective field originates from the combined effect of Rashba interaction and magnetic flux and that it contains important corrections due to electron-electron interactions. We show that the compensating field is an oscillatory function of both the spin-orbit and the Aharonov-Bohm phases. Moreover, the effective field never vanishes due to the particle-hole symmetry breaking independently of the gate voltage.Comment: 9 pages, 5 figure

    Generation of microbubbles in extracorporeal life support and assessment of new elimination strategies

    Get PDF
    Occurrence of microbubbles (MB) is a major problem during venoarterial extracorporeal life support (ECLS) with partially severe clinical complications. The aim of this study was to establish an in vitro ECLS setup for the generation and detection of MB. Furthermore, we assessed different MB elimination strategies. Patient and ECLS circuit were simulated using reservoirs, a centrifugal pump, a membrane oxygenator, and an occluder (modified roller pump). The system was primed with a glycerin solution of 44%. Three different revolution speeds (2500, 3000, and 3400 rpm) were applied. For MB generation, the inflow line of the pump was either statically or dynamically (15 rpm) occluded. A bubble counter was used for MB detection. The effectiveness of the oxygenator and dynamic bubble traps (DBTs) was evaluated in regard to MB elimination capacities. MB generation was highly dependent on negative pressure at the inflow line. Increasing revolution speeds and restriction of the inflow led to increased MB activity. The significant difference between inflow and outflow MB volume identified the centrifugal pump as a main source. We could show that the oxygenator’s ability to withhold larger MB is limited. The application of one or multiple DBTs leads to a significant reduction in MB count and overall gas volume. The application of DBT can significantly reduce the overall gas volume, especially at high flow rates. Moreover, large MB can effectively be broken down for faster absorption. In general, the incidence of MBs is significantly dependent on pump speed and restriction of the inflow. The centrifugal pump was identified as a major source of MB generation

    Machine learning based analyses on metabolic networks supports high-throughput knockout screens

    Get PDF
    Background: Computational identification of new drug targets is a major goal of pharmaceutical bioinformatics. Results: This paper presents a machine learning strategy to study and validate essential enzymes of a metabolic network. Each single enzyme was characterized by its local network topology, gene homologies and co-expression, and flux balance analyses. A machine learning system was trained to distinguish between essential and non-essential reactions. It was validated by a comprehensive experimental dataset, which consists of the phenotypic outcomes from single knockout mutants of Escherichia coli (KEIO collection). We yielded very reliable results with high accuracy (93%) and precision (90%). We show that topologic, genomic and transcriptomic features describing the network are sufficient for defining the essentiality of a reaction. These features do not substantially depend on specific media conditions and enabled us to apply our approach also for less specific media conditions, like the lysogeny broth rich medium. Conclusion: Our analysis is feasible to validate experimental knockout data of high throughput screens, can be used to improve flux balance analyses and supports experimental knockout screens to define drug targets

    In Vitro Comparison of Novel Polyurethane Aortic Valves and Homografts After Seeding and Conditioning

    Get PDF
    The aim of the study was to compare the behavior of seeded cells on synthetic and natural aortic valve scaffolds during a low-flow conditioning period. Polyurethane (group A) and aortic homograft valves (group B) were consecutively seeded with human fibroblasts (FB), and endothelial cells (EC) using a rotating seeding device. Each seeding procedure was followed by an exposure to low pulsatile flow in a dynamic bioreactor for 5 days. For further analysis, samples were taken before and after conditioning. Scanning electron microscopy showed confluent cell layers in both groups. Immunohistochemical analysis showed the presence of EC and FB before and after conditioning as well as the establishment of an extracellular matrix (ECM) during conditioning. A higher expression of ECM was observed on the scaffolds' inner surface. Real-time polymerase chain reaction showed higher inflammatory response during the conditioning of homografts. Endothelialization caused a decrease in inflammatory gene expression. The efficient colonization, the establishment of an ECM, and the comparable inflammatory cell reaction to the scaffolds in both groups proved the biocompatibility of the synthetic scaffold. The newly developed bioreactor permits conditioning and cell adaption to shear stress. Therefore, polyurethane valve scaffolds may offer a new option for aortic valve replacement

    A Novel Seeding and Conditioning Bioreactor for Vascular Tissue Engineering

    Get PDF
    Multiple efforts have been made to develop small-diameter tissue engineered vascular grafts using a great variety of bioreactor systems at different steps of processing. Nevertheless, there is still an extensive need for a compact all-in-one system providing multiple and simultaneous processing. The aim of this project was to develop a new device to fulfill the major requirements of an ideal system that allows simultaneous seeding, conditioning, and perfusion. The newly developed system can be actuated in a common incubator and consists of six components: a rotating cylinder, a pump, a pulse generator, a control unit, a mixer, and a reservoir. Components that are in direct contact with cell media, cells, and/or tissue allow sterile processing. Proof-of-concept experiments were performed with polyurethane tubes and collagen tubes. The scaffolds were seeded with fibroblasts and endothelial cells that were isolated from human saphenous vein segments. Scanning electron microscopy and immunohistochemistry showed better seeding success of polyurethane scaffolds in comparison to collagen. Conditioning of polyurethane tubes with 100 dyn/cm2 resulted in cell detachments, whereas a moderate conditioning program with stepwise increase of shear stress from 10 to 40 dyn/cm2 induced a stable and confluent cell layer. The new bioreactor is a powerful tool for quick and easy testing of various scaffold materials for the development of tissue engineered vascular grafts. The combination of this bioreactor with native tissue allows testing of medical devices and medicinal substances under physiological conditions that is a good step towards reduction of animal testing. In the long run, the bioreactor could turn out to produce tissue engineered vascular grafts for human applications “at the bedside”

    Initiative "Kommunales Know-How für Nahost"

    Get PDF
    INITIATIVE "KOMMUNALES KNOW-HOW FÜR NAHOST" Initiative "Kommunales Know-How für Nahost" / Arslan, Bülent (Rights reserved) ( -
    corecore