17 research outputs found
Mouse Models of Hepatocellular Carcinoma
Hepatocellular carcinoma (HCC) represents a major and steadily increasing global health challenge as the most common primary liver malignancy and leading cause of death in cirrhotic patients. The only hope for curative treatment or significant increase in life expectancy is early detection. Once patients have progressed towards end-stage HCC, effective treatment options are extremely limited on the background of a very high degree of heterogeneity in clinical presentation and outcome. Experimental chronic liver injury and cancer have been used extensively to mimic the human disease. In particular, mouse studies have advanced the field due to the ability to easily manipulate the mouse genome and transcriptome for mechanistic evaluations. In addition, they offer the opportunity to screen new therapeutic strategies cost-effectively and in quick high-throughput, large-scale formats. The most commonly used mouse models in HCC research can be categorized as chemotoxic, diet-induced, and genetically engineered models. It is important to note that no particular model mimics all features of a given HCC etiology or histological subtype, and each model poses advantages and disadvantages that need to be carefully considered
Mouse models of hepatocellular carcinoma
Hepatocellular carcinoma (HCC) represents a major and steadily increasing global health challenge as the most common primary liver malignancy and leading cause of death in cirrhotic patients. The only hope for curative treatment or significant increase in life expectancy is early detection. Once patients have progressed towards end-stage HCC, effective treatment options are extremely limited on the background of a very high degree of heterogeneity in clinical presentation and outcome. Experimental chronic liver injury and cancer have been used extensively to mimic the human disease. In particular, mouse studies have advanced the field due to the ability to easily manipulate the mouse genome and transcriptome for mechanistic evaluations. In addition, they offer the opportunity to screen new therapeutic strategies cost effectively and in quick high-throughput, large-scale formats. The most commonly used mouse models in HCC research can be categorized as chemotoxic, diet-induced, and genetically engineered models. It is important to note that no particular model mimics all features of a given HCC etiology or histological subtype, and each model poses advantages and disadvantages that need to be carefully considered
TWEAK/Fn14 signalling regulates the tissue microenvironment in chronic pancreatitis
Chronic pancreatitis increases the risk of developing pancreatic cancer through the upregulation of pathways favouring proliferation, fibrosis, and sustained inflammation. We established in previous studies that the ligand tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) signals through its cognate receptor fibroblast growth factor-inducible 14 (Fn14) to regulate these underlying cellular processes in the chronic liver injury niche. However, the role of the TWEAK/Fn14 signalling pathway in pancreatic disease is entirely unknown. An analysis of publicly available datasets demonstrated that the TWEAK receptor Fn14 is upregulated in pancreatitis and pancreatic adenocarcinoma, with single cell RNA sequencing revealing pancreatic ductal cells as the main Fn14 producers. We then used choline-deficient, ethionine-supplemented (CDE) diet feeding of wildtype C57BL/6J and Fn14 knockout littermates to (a) confirm CDE treatment as a suitable model of chronic pancreatitis and (b) to investigate the role of the TWEAK/Fn14 signalling pathway in pancreatic ductal proliferation, as well as fibrotic and inflammatory cell dynamics. Our time course data obtained at three days, three months, and six months of CDE treatment reveal that a lack of TWEAK/Fn14 signalling significantly inhibits the establishment and progression of the tissue microenvironment in CDE-induced chronic pancreatitis, thus proposing the TWEAK/Fn14 pathway as a novel therapeutic target
Single-nucleus RNA sequencing of pre-malignant liver reveals disease-associated hepatocyte state with HCC prognostic potential
Current approaches to staging chronic liver diseases have limited utility for predicting liver cancer risk. Here, we employed single-nucleus RNA sequencing (snRNA-seq) to characterize the cellular microenvironment of healthy and pre-malignant livers using two distinct mouse models. Downstream analyses unraveled a previously uncharacterized disease-associated hepatocyte (daHep) transcriptional state. These cells were absent in healthy livers but increasingly prevalent as chronic liver disease progressed. Copy number variation (CNV) analysis of microdissected tissue demonstrated that daHep-enriched regions are riddled with structural variants, suggesting these cells represent a pre-malignant intermediary. Integrated analysis of three recent human snRNA-seq datasets confirmed the presence of a similar phenotype in human chronic liver disease and further supported its enhanced mutational burden. Importantly, we show that high daHep levels precede carcinogenesis and predict a higher risk of hepatocellular carcinoma development. These findings may change the way chronic liver disease patients are staged, surveilled, and risk stratified
The role of liver progenitor cells during liver regeneration, fibrogenesis and carcinogenesis
The growing worldwide challenge of cirrhosis and hepatocellular carcinoma due to increasing prevalence of excessive alcohol consumption, viral hepatitis, obesity, and the metabolic syndrome has sparked interest in stem cell-like liver progenitor cells (LPCs) as potential candidates for cell therapy and tissue engineering, as an alternative approach to whole organ transplantation. However, LPCs always proliferate in chronic liver diseases with a predisposition to cancer; they have been suggested to play major roles in driving fibrosis, disease progression, and may even represent tumor-initiating cells. Hence, a greater understanding of the factors that govern their activation, communication with other hepatic cell types, and bipotential differentiation as opposed to their potential transformation is needed before their therapeutic potential can be harnessed
The murine choline-deficient, ethionine-supplemented (CDE) diet model of chronic liver injury
Chronic liver diseases, such as viral hepatitis, alcoholic liver disease, or non-alcoholic fatty liver disease, are characterized by continual inflammation, progressive destruction and regeneration of the hepatic parenchyma, liver progenitor cell proliferation, and fibrosis. The end-stage of every chronic liver disease is cirrhosis, a major risk factor for the development of hepatocellular carcinoma. To study processes regulating disease initiation, establishment, and progression, several animal models are used in laboratories. Here we describe a six-week time course of the choline-deficient and ethionine-supplemented (CDE) mouse model, which involves feeding six-week old male C57BL/6J mice with choline-deficient chow and 0.15% DL-ethionine-supplemented drinking water. Monitoring of animal health and a typical body weight loss curve are explained. The protocol demonstrates the gross examination of a CDE-treated liver and blood collection by cardiac puncture for subsequent serum analyses. Next, the liver perfusion technique and collection of different hepatic lobes for standard evaluations are shown, including liver histology assessments by hematoxylin and eosin or Sirius Red stainings, immunofluorescent detection of hepatic cell populations as well as transcriptome profiling of the liver microenvironment. This mouse model is suitable for studying inflammatory, fibrogenic, and liver progenitor cell dynamics induced through chronic liver disease and can be used to test potential therapeutic agents that may modulate these processes
Divergent Inflammatory, Fibrogenic, and Liver Progenitor Cell Dynamics in Two Common Mouse Models of Chronic Liver Injury
Complications of end-stage chronic liver disease signify a major cause of mortality worldwide. Irrespective of the underlying cause, most chronic liver diseases are characterized by hepatocellular necrosis, inflammation, fibrosis, and proliferation of liver progenitor cells or ductular reactions. Vast differences exist between experimental models that mimic these processes, and their identification is fundamental for translational research. We compared two common murine models of chronic liver disease: the choline-deficient, ethionine-supplemented (CDE) diet versus thioacetamide (TAA) supplementation. Markers of liver injury, including serum alanine transaminase levels, apoptosis, hepatic fat loading, and oxidative stress, as well as inflammatory, fibrogenic and liver progenitor cell responses, were assessed at days 3, 7, 14, 21, and 42. This study revealed remarkable differences between the models. It identified periportal injury and fibrosis with an early peak and slow normalization of all parameters in the CDE regimen, whereas TAA-treated mice had pericentral patterns of progressive injury and fibrosis, resulting in a more severe hepatic injury phenotype. This study is the first to resolve two different patterns of injury and fibrosis in the CDE and TAA model and to indisputably identify the fibrosis pattern in the TAA model as driven from the pericentral vein region. Our data provide a valuable foundation for future work using the CDE and TAA regimens to model a variety of human chronic liver diseases
Divergent Inflammatory, Fibrogenic, and Liver Progenitor Cell Dynamics in Two Common Mouse Models of Chronic Liver Injury
Complications of end-stage chronic liver disease signify a major cause of mortality worldwide. Irrespective of the underlying cause, most chronic liver diseases are characterized by hepatocellular necrosis, inflammation, fibrosis, and proliferation of liver progenitor cells or ductular reactions..
The role of liver progenitor cells during liver regeneration, fibrogenesis and carcinogenesis.
The growing worldwide challenge of cirrhosis and hepatocellular carcinoma due to increasing prevalence of excessive alcohol consumption, viral hepatitis, obesity, and the metabolic syndrome has sparked interest in stem cell-like liver progenitor cells (LPCs) as potential candidates for cell therapy and tissue engineering, as an alternative approach to whole organ transplantation. However, LPCs always proliferate in chronic liver diseases with a predisposition to cancer; they have been suggested to play major roles in driving fibrosis, disease progression, and may even represent tumor-initiating cells. Hence, a greater understanding of the factors that govern their activation, communication with other hepatic cell types, and bipotential differentiation as opposed to their potential transformation is needed before their therapeutic potential can be harnessed