13 research outputs found

    Probing Electrochemical Potential Differences over the Solid/Liquid Interface in Li-Ion Battery Model Systems

    Get PDF
    The electrochemical potential difference (Δμ̅) is the driving force for the transfer of a charged species from one phase to another in a redox reaction. In Li-ion batteries (LIBs), Δμ̅ values for both electrons and Li-ions play an important role in the charge-transfer kinetics at the electrode/electrolyte interfaces. Because of the lack of suitable measurement techniques, little is known about how Δμ̅ affects the redox reactions occurring at the solid/liquid interfaces during LIB operation. Herein, we outline the relations between different potentials and show how ambient pressure photoelectron spectroscopy (APPES) can be used to follow changes in Δμ̅e over the solid/liquid interfaces operando by measuring the kinetic energy (KE) shifts of the electrolyte core levels. The KE shift versus applied voltage shows a linear dependence of ∼1 eV/V during charging of the electrical double layer and during solid electrolyte interphase formation. This agrees with the expected results for an ideally polarizable interface. During lithiation, the slope changes drastically. We propose a model to explain this based on charge transfer over the solid/liquid interface

    Stabilization of Li-Rich Disordered Rocksalt Oxyfluoride Cathodes by Particle Surface Modification

    Get PDF
    Promising theoretical capacities and high voltages are offered by Li-rich disordered rocksalt oxyfluoride materials as cathodes in lithium-ion batteries. However, as has been discovered for many other Li-rich materials, the oxyfluorides suffer from extensive surface degradation, leading to severe capacity fading. In the case of Li2_{2}VO2_{2}F, we have previously determined this to be a result of detrimental reactions between an unstable surface layer and the organic electrolyte. Herein, we present the protection of Li2_{2}VO2_{2}F particles with AlF3_{3} surface modification, resulting in a much-enhanced capacity retention over 50 cycles. While the specific capacity for the untreated material drops below 100 mA h g−1^{-1} after only 50 cycles, the treated materials retain almost 200 mA h g−1^{-1}. Photoelectron spectroscopy depth profiling confirms the stabilization of the active material surface by the surface modification and reveals its suppression of electrolyte decomposition

    Combining Electrochemistry and Photoelectron Spectroscopy for the Study of Li-ion Batteries

    No full text
    In this thesis photoelectron spectroscopy (PES) is combined with electrochemistry to investigate the electrochemical processes that occur at the electrode/electrolyte interfaces in lithium-ion batteries (LIBs). LIB systems are studied by the use of both ex situ PES, where electrodes are electrochemically pre-cycled and subsequently measured by PES, and operando PES, where electrodes are cycled during PES measurements.  Ex situ PES is used to determine the main degradation mechanisms of a novel high capacity material, Li2VO2F. The capacity fade seen for Li2VO2F. is found to be related to an irreversible oxidation of the active material at high voltages, and a continuous surface layer formation at low voltages. To decrease the capacity fading three strategies for optimizing the interface are investigated. The results show that a surface coating of AlF3 most efficiently can mitigate electrolyte reduction, while boron containing electrolyte additives and transition metal substitution more successfully limit the oxidation of the active material.  A large part of the work performed in this thesis has been devoted towards developing a methodology suitable for conducting operando ambient pressure photoelectron spectroscopy (APPES) measurements on LIB systems. A general connection between the theory of PES and electrochemistry is made, where in particular a model suitable for interpreting operando APPES results on solid/liquid interfaces is suggested. The model is further developed for the specific case of LIB interfaces. The results from the operando studies show that the kinetic energy shifts of the liquid electrolyte measured by APPES can be correlated to the electrochemical reactions occurring at the interface. If no charge transfer occurs, the kinetic energy shift is proportional to the applied voltage. During charge transfer the behavior is more complex, and the kinetic energy shifts are related to the change in chemical potential of the working electrode.  In summary, this thesis exemplifies how both ex situ and operando PES are highly useful techniques for the study of LIB battery interfaces. The possibilities of both techniques are highlighted, and important considerations for an accurate interpretation of the PES results are also discussed.

    Potentials in Li-Ion Batteries Probed by Operando Ambient Pressure Photoelectron Spectroscopy

    Get PDF
    The important electrochemical processes in a battery happen at the solid/liquid interfaces. Operando ambient pressure photoelectron spectroscopy (APPES) is one tool to study these processes with chemical specificity. However, accessing this crucial interface and identifying the interface signal are not trivial. Therefore, we present a measurement setup, together with a suggested model, exemplifying how APPES can be used to probe potential differences over the electrode/electrolyte interface, even without direct access to the interface. Both the change in electron electrochemical potential over the solid/liquid interface, and the change in Li chemical potential of the working electrode (WE) surface at Li-ion equilibrium can be probed. Using a Li4Ti5O12 composite as a WE, our results show that the shifts in kinetic energy of the electrolyte measured by APPES can be correlated to the electrochemical reactions occurring at the WE/electrolyte interface. Different shifts in kinetic energy are seen depending on if a phase transition reaction occurs or if a single phase is lithiated. The developed methodology can be used to evaluate charge transfer over the WE/electrolyte interface as well as the lithiation/delithiation mechanism of the WE

    Advances in studying interfacial reactions in rechargeable batteries by photoelectron spectroscopy

    No full text
    Many of the challenges faced in the development of lithium-ion batteries (LIBs) and next-generation technologies stem from the (electro)chemical interactions between the electrolyte and electrodes during operation. It is at the electrode-electrolyte interfaces where ageing mechanisms can originate through, for example, the build-up of electrolyte decomposition products or the dissolution of metal ions. In pursuit of understanding these processes, X-ray photoelectron spectroscopy (XPS) has become one of the most important and powerful techniques in a large collection of available tools. As a highly surface-sensitive technique, it is often thought to be the most relevant in characterising the interfacial reactions that occur inside modern rechargeable batteries. This review tells the story of how XPS is employed in day-to-day battery research, as well as highlighting some of the most recent innovative in situ and operando methodologies developed to probe battery materials in ever greater detail. A large focus is placed not only on LIBs, but also on next-generation materials and future technologies, including sodium- and potassium-ion, multivalent, and solid-state batteries. The capabilities, limitations and practical considerations of XPS, particularly in relation to the investigation of battery materials, are discussed, and expectations for its use and development in the future are assessed

    Degradation Mechanisms in Li2VO2F Li-Rich Disordered Rock-Salt Cathodes

    No full text
    The increased energy density in Li-ion batteries is particularly dependent on the cathode materials that so far have been limiting the overall battery performance. A new class of materials, Li-rich disordered rock salts, has recently been brought forward as promising candidates for next-generation cathodes because of their ability to reversibly cycle more than one Li-ion per transition metal. Several variants of these Li-rich cathode materials have been developed recently and show promising initial capacities, but challenges concerning capacity fade and voltage decay during cycling are yet to be overcome. Mechanisms behind the significant capacity fade of some materials must be understood to allow for the design of new materials in which detrimental reactions can be mitigated. In this study, the origin of the capacity fade in the Li-rich material Li2VO2F is investigated, and it is shown to begin with degradation of the particle surface that spreads inward with continued cycling

    Probing a battery electrolyte drop with ambient pressure photoelectron spectroscopy

    Get PDF
    Operando ambient pressure photoelectron spectroscopy in realistic battery environments is a key development towards probing the functionality of the electrode/electrolyte interface in lithium-ion batteries that is not possible with conventional photoelectron spectroscopy. Here, we present the ambient pressure photoelectron spectroscopy characterization of a model electrolyte based on 1M bis(trifluoromethane)sulfonimide lithium salt in propylene carbonate. For the first time, we show ambient pressure photoelectron spectroscopy data of propylene carbonate in the liquid phase by using solvent vapor as the stabilizing environment. This enables us to separate effects from salt and solvent, and to characterize changes in electrolyte composition as a function of probing depth. While the bulk electrolyte meets the expected composition, clear accumulation of ionic species is found at the electrolyte surface. Our results show that it is possible to measure directly complex liquids such as battery electrolytes, which is an important accomplishment towards true operando studies

    Probing Electrochemical Potential Differences over the Solid/Liquid Interface in Li-Ion Battery Model Systems.

    Get PDF
    The electrochemical potential difference (Δμ̅) is the driving force for the transfer of a charged species from one phase to another in a redox reaction. In Li-ion batteries (LIBs), Δμ̅ values for both electrons and Li-ions play an important role in the charge-transfer kinetics at the electrode/electrolyte interfaces. Because of the lack of suitable measurement techniques, little is known about how Δμ̅ affects the redox reactions occurring at the solid/liquid interfaces during LIB operation. Herein, we outline the relations between different potentials and show how ambient pressure photoelectron spectroscopy (APPES) can be used to follow changes in Δμ̅e over the solid/liquid interfaces operando by measuring the kinetic energy (KE) shifts of the electrolyte core levels. The KE shift versus applied voltage shows a linear dependence of ∼1 eV/V during charging of the electrical double layer and during solid electrolyte interphase formation. This agrees with the expected results for an ideally polarizable interface. During lithiation, the slope changes drastically. We propose a model to explain this based on charge transfer over the solid/liquid interface
    corecore