81 research outputs found

    Submarine eruption-fed and resedimented pumice-rich facies: the Dogashima Formation (Izu Peninsula, Japan)

    Get PDF
    In the Izu Peninsula (Japan), the Pliocene pumice-rich Dogashima Formation (4.55?±?0.87 Ma) displays exceptional preservation of volcaniclastic facies that were erupted and deposited in a below wave-base marine setting. It includes high-concentration density current deposits that contain clasts that were emplaced hot, indicating an eruption-fed origin. The lower part of the Dogashima 2 unit consists of a very thick sequence (&lt;12 m) of massive grey andesite breccia restricted to the base of a submarine channel, gradationally overlain by pumice breccia, which is widespread but much thinner and finer in the overbank setting. These two breccias share similar mineralogy and crystal composition and are considered to be co-magmatic and derived from the destruction of a submarine dome by an explosive, pumice-forming eruption. The two breccias were deposited from a single, explosive eruption-fed, sustained, sea floor-hugging, water-supported, high-concentration density current in which the clasts were sorted according to their density. At the rim of the channel, localised good hydraulic sorting of clasts and stratification in the pumice breccia are interpreted to reflect local current expansion and unsteadiness rather than to be the result of hydraulic sorting of clasts during fall from a submarine eruption column and/or umbrella plume. A bimodal coarse (&gt;1 m) pumice- and ash-rich bed overlying the breccias may be derived from delayed settling of pyroclasts from suspension. In Dogashima 1 and 2, thick cross- and planar-bedded facies composed of sub-rounded pumice clasts are intercalated with eruption-fed facies, implying inter-eruptive mass-wasting on the flank of a submarine volcano, and reworking and resedimentation by high-energy tractional currents in a below wave-base environment.<br/

    Grain-size distribution of volcaniclastic rocks 2: Characterizing grain size and hydraulic sorting

    Get PDF
    Quantification of the grain size distribution of sediments allows interpretation of processes of transport and deposition. Jutzeler et al. (2012) developed a technique to determine grain size distribution of consolidated clastic rocks using functional stereology, allowing direct comparison between unconsolidated sediments and rocks. Here, we develop this technique to characterize hydraulic sorting and infer transport and deposition processes. We compare computed grain size and sorting of volcaniclastic rocks with field-based characteristics of volcaniclastic facies for which transport and depositional mechanisms have been inferred. We studied pumice-rich, subaqueous facies of volcaniclastic rocks from the Oligocene Ohanapecosh Formation (Ancestral Cascades, Washington, USA), Pliocene Dogashima Formation (Izu Peninsula, Honshu, Japan), Miocene Manukau Subgroup (Northland, New Zealand) and the Quaternary Sierra La Primavera caldera (Jalisco State, Mexico). These sequences differ in bed thickness, grading and abundance of matrix. We propose to evaluate grain size and sorting of volcaniclastic deposits by values of their modes, matrix proportion (< 2 mm; F-1) and D16, instead of median diameter (D50) and standard deviation parameters. F-1 and D16 can be uniformly used to characterize and compare sieving and functional stereology data. Volcaniclastic deposits typically consist of mixtures of particles that vary greatly in density and porosity. Hydraulic sorting ratios can be used to test whether inferred density of mixed clast populations of pumice and dense clasts are hydraulically sorted with each other, considering various types of transport under water. Evaluation of this ratio for our samples shows that most studied volcaniclastic facies are deposited by settling from density currents, and that basal dense clast breccia are emplaced by shear rolling. These hydraulic sorting ratios can be applied to any type of clastic rocks, and indifferently on consolidated and unconsolidated samples

    Discovery of the largest historic silicic submarine eruption

    Get PDF
    It was likely twice the size of the renowned Mount St. Helens eruption of 1980 and perhaps more than 10 times bigger than the more recent 2010 Eyjafjallajökull eruption in Iceland. However, unlike those two events, which dominated world news headlines, in 2012 the daylong submarine silicic eruption at Havre volcano in the Kermadec Arc, New Zealand (Figure 1a; ~800 kilometers north of Auckland, New Zealand), passed without fanfare. In fact, for a while no one even knew it had occurred

    The Eruption of Submarine Rhyolite Lavas and Domes in the Deep Ocean – Havre 2012, Kermadec Arc

    Get PDF
    Silicic effusive eruptions in deep submarine environments have not yet been directly observed and very few modern submarine silicic lavas and domes have been described. The eruption of Havre caldera volcano in the Kermadec arc in 2012 provided an outstanding database for research on deep submarine silicic effusive eruptions because it produced 15 rhyolite (70–72 wt.% SiO2) lavas and domes with a total volume of ∼0.21 km3 from 14 separate seafloor vents. Moreover, in 2015, the seafloor products were observed, mapped and sampled in exceptional detail (1-m resolution) using AUV Sentry and ROV Jason2 deployed from R/V Roger Revelle. Vent positions are strongly aligned, defining NW-SE and E-W trends along the southwestern and southern Havre caldera margin, respectively. The alignment of the vents suggests magma ascent along dykes which probably occupy faults related to the caldera margin. Four vents part way up the steeply sloping southwestern caldera wall at 1,200–1,300 m below sea level (bsl) and one on the caldera rim (1,060 m bsl) produced elongate lavas. On the steep caldera wall, the lavas consist of narrow tongues that have triangular cross-section shapes. Two of the narrow-tongue segments are connected to wide lobes on the flat caldera floor at ∼1,500 m bsl. The lavas are characterized by arcuate surface ridges oriented perpendicular to the propagation direction. Eight domes were erupted onto relatively flat sea floor from vents at ∼1,000 m bsl along the southern and southwestern caldera rim. They are characterized by steep margins and gently convex-up upper surfaces. With one exception, the domes have narrow spines and deep clefts above the inferred vent positions. One dome has a relatively smooth upper surface. The lavas and domes all consist of combinations of coherent rhyolite and monomictic rhyolite breccia. Despite eruption from deep-water vents (most &gt;900 m bsl), the Havre 2012 rhyolite lavas and domes are very similar to subaerial rhyolite lavas and domes in terms of dimensions, volumes, aspect ratio, textures and morphology. They show that lava morphology was strongly controlled by the pre-existing seafloor topography: domes and wide lobes formed where the rhyolite was emplaced onto flat sea floor, whereas narrow tongues formed where the rhyolite was emplaced on the steep slopes of the caldera wall

    Tracking Changes in Neuropathic Pain After Acute Spinal Cord Injury

    Get PDF
    Neuropathic pain represents a primary detrimental outcome of spinal cord injury. A major challenge facing effective management is a lack of surrogate measures to examine the physiology and anatomy of neuropathic pain. To this end, we investigated the relationship between psychophysical responses to tonic heat stimulation and neuropathic pain rating after traumatic spinal cord injury. Subjects provided a continuous rating to 2 min of tonic heat at admission to rehabilitation and again at discharge. Adaptation, temporal summation of pain, and modulation profile (i.e., the relationship between adaptation and temporal summation of pain) were extracted from tonic heat curves for each subject. There was no association between any of the tonic heat outcomes and neuropathic pain severity at admission. The degree of adaptation, the degree of temporal summation of pain, and the modulation profile did not change significantly from admission to discharge. However, changes in modulation profiles between admission and discharge were significantly correlated with changes in neuropathic pain severity (p = 0.027; R2 = 0.323). The modulation profile may represent an effective measure to track changes in neuropathic pain severity from early to later stages of spinal cord injury

    The largest deep-ocean silicic volcanic eruption of the past century

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 4 (2018): e1701121, doi:10.1126/sciadv.1701121.The 2012 submarine eruption of Havre volcano in the Kermadec arc, New Zealand, is the largest deep-ocean eruption in history and one of very few recorded submarine eruptions involving rhyolite magma. It was recognized from a gigantic 400-km2 pumice raft seen in satellite imagery, but the complexity of this event was concealed beneath the sea surface. Mapping, observations, and sampling by submersibles have provided an exceptionally high fidelity record of the seafloor products, which included lava sourced from 14 vents at water depths of 900 to 1220 m, and fragmental deposits including giant pumice clasts up to 9 m in diameter. Most (>75%) of the total erupted volume was partitioned into the pumice raft and transported far from the volcano. The geological record on submarine volcanic edifices in volcanic arcs does not faithfully archive eruption size or magma production.This research was funded by Australian Research Council Postdoctoral fellowships (DP110102196 and DE150101190 to R. Carey), a short-term postdoctoral fellowship grant from the Japan Society for the Promotion of Science (to R. Carey), National Science Foundation grants (OCE1357443 to B.H., OCE1357216 to S.A.S., and EAR1447559 to J.D.L.W.), and a New Zealand Marsden grant (U001616 to J.D.L.W.). J.D.L.W. and A.M. were supported by a research grant and PhD scholarship from the University of Otago. R.W. was supported by NIWA grant COPR1802. J.D.L.W. and F.C.-T. were supported by GNS Science grants CSA-GHZ and CSA-EEZ. M.J. was supported by the U.S. Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program

    A revised Plio-Pleistocene age model and paleoceanography of the northeastern Caribbean Sea: IODP Site U1396 off Montserrat, Lesser Antilles

    Get PDF
    Site U1396 was piston cored as a part of Integrated Ocean Drilling Project Expedition 340 to establish a long record for Lesser Antilles volcanism. A ~150 m sediment succession was recovered from three holes on a bathymetric high ~33 km southwest of Montserrat. A series of shipboard and newly-generated chronostratigraphic tools (biostratigraphy, magnetostratigraphy, astrochronology, and stable isotope chemostratigraphy) were employed to generate an integrated age model. Two possible chronostratigraphic interpretations for the Brunhes chron are presented, with hypotheses to explain the discrepancies seen between this study and Wall-Palmer et al. (2014). The recent Wade et al. (2011) planktic foraminiferal biostratigraphic calibration is tested, revealing good agreement between primary datums observed at Site U1396 and calibrated ages, but significant mismatches for some secondary datums. Sedimentation rates are calculated, both including and excluding the contribution of discrete volcanic sediment layers within the succession. Rates are found to be ‘pulsed’ or highly variable within the Pliocene interval, declining through the 1.5-2.4 Ma interval, and then lower through the Pleistocene. Different explanations for the trends in the sedimentation rates are discussed, including orbitally-forced biogenic production spikes, elevated contributions of cryptotephra (dispersed ash), and changes in bottom water sources and flow rates with increased winnowing in the area of Site U1396 into the Pleistocene
    • …
    corecore