13 research outputs found
MR-based attenuation correction for PET/MRI neurological studies with continuous-valued attenuation coefficients for bone through a conversion from R2* to CT-Hounsfield units
AIM: MR-based correction for photon attenuation in PET/MRI remains challenging, particularly for neurological applications requiring quantitation of data. Existing methods are either not sufficiently accurate or are limited by the computation time required. The goal of this study was to develop an MR-based attenuation correction method that accurately separates bone tissue from air and provides continuous-valued attenuation coefficients for bone.
MATERIALS AND METHODS: PET/MRI and CT datasets were obtained from 98 subjects (mean age [±SD]: 66yrs [±9.8], 57 females) using an IRB-approved protocol and with informed consent. Subjects were injected with 352±29MBq of (18)F-Florbetapir tracer, and PET acquisitions were begun either immediately or 50min after injection. CT images of the head were acquired separately using a PET/CT system. Dual echo ultrashort echo-time (UTE) images and two-point Dixon images were acquired. Regions of air were segmented via a threshold of the voxel-wise multiplicative inverse of the UTE echo 1 image. Regions of bone were segmented via a threshold of the R2* image computed from the UTE echo 1 and UTE echo 2 images. Regions of fat and soft tissue were segmented using fat and water images decomposed from the Dixon images. Air, fat, and soft tissue were assigned linear attenuation coefficients (LACs) of 0, 0.092, and 0.1cm(-1), respectively. LACs for bone were derived from a regression analysis between corresponding R2* and CT values. PET images were reconstructed using the gold standard CT method and the proposed CAR-RiDR method.
RESULTS: The RiDR segmentation method produces mean Dice coefficient±SD across subjects of 0.75±0.05 for bone and 0.60±0.08 for air. The CAR model for bone LACs greatly improves accuracy in estimating CT values (28.2%±3.0 mean error) compared to the use of a constant CT value (46.9%±5.8, p<10(-6)). Finally, the CAR-RiDR method provides a low whole-brain mean absolute percent-error (MAPE±SD) in PET reconstructions across subjects of 2.55%±0.86. Regional PET errors were also low and ranged from 0.88% to 3.79% in 24 brain ROIs.
CONCLUSION: We propose an MR-based attenuation correction method (CAR-RiDR) for quantitative PET neurological imaging. The proposed method employs UTE and Dixon images and consists of two novel components: 1) accurate segmentation of air and bone using the inverse of the UTE1 image and the R2* image, respectively and 2) estimation of continuous LAC values for bone using a regression between R2* and CT-Hounsfield units. From our analysis, we conclude that the proposed method closely approaches (<3% error) the gold standard CT-scaled method in PET reconstruction accuracy
Cardiovascular and metabolic health is associated with functional brain connectivity in middle-aged and older adults: Results from the Human Connectome Project-Aging study
Several cardiovascular and metabolic indicators, such as cholesterol and blood pressure have been associated with altered neural and cognitive health as well as increased risk of dementia and Alzheimer\u27s disease in later life. In this cross-sectional study, we examined how an aggregate index of cardiovascular and metabolic risk factor measures was associated with correlation-based estimates of resting-state functional connectivity (FC) across a broad adult age-span (36-90+ years) from 930 volunteers in the Human Connectome Project Aging (HCP-A). Increased (i.e., worse) aggregate cardiometabolic scores were associated with reduced FC globally, with especially strong effects in insular, medial frontal, medial parietal, and superior temporal regions. Additionally, at the network-level, FC between core brain networks, such as default-mode and cingulo-opercular, as well as dorsal attention networks, showed strong effects of cardiometabolic risk. These findings highlight the lifespan impact of cardiovascular and metabolic health on whole-brain functional integrity and how these conditions may disrupt higher-order network integrity
Recommendations for quantitative cerebral perfusion MRI using multi-timepoint arterial spin labeling: acquisition, quantification, and clinical applications
Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article
Recommendations for quantitative cerebral perfusion MRI using multi-timepoint arterial spin labeling:Acquisition, quantification, and clinical applications
Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article.</p
Recommendations for quantitative cerebral perfusion MRI using multi-timepoint arterial spin labeling:Acquisition, quantification, and clinical applications
Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article.</p
Recommendations for quantitative cerebral perfusion MRI using multiâtimepoint arterial spin labeling: Acquisition, quantification, and clinical applications
Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article
Associations between age, sex, APOE genotype, and regional vascular physiology in typically aging adults
Altered blood flow in the human brain is characteristic of typical aging. However, numerous factors contribute to inter-individual variation in patterns of blood flow throughout the lifespan. To better understand the mechanisms behind such variation, we studied how sex and APOE genotype, a primary genetic risk factor for Alzheimer's disease (AD), influence associations between age and brain perfusion measures. We conducted a cross-sectional study of 562 participants from the Human Connectome Project - Aging (36 to >90 years of age). We found widespread associations between age and vascular parameters, where increasing age was associated with regional decreases in cerebral blood flow (CBF) and increases in arterial transit time (ATT). When grouped by sex and APOE genotype, interactions between group and age demonstrated that females had relatively greater CBF and lower ATT compared to males. Females carrying the APOE Δ4 allele showed the strongest association between CBF decline and ATT incline with age. This demonstrates that sex and genetic risk for AD modulate age-associated patterns of cerebral perfusion measures
Preliminary evidence for cerebral capillary shunting in adults with sickle cell anemia
Elevated flow velocities in adults with sickle cell anemia (SCA) may cause rapid erythrocyte transit through capillaries. This phenomenon could present as dural venous sinus hyperintensity on arterial spin labeling (ASL)-MRI and could be indicative of capillary shunting. Here, the prevalence of ASL venous hyperintensities and association with relevant physiology in adults with SCA was investigated. SCA (n = 46) and age-matched control (n = 16) volunteers were recruited for 3.0 T MRI. Pseudo-continuous ASL-MRI was acquired for cerebral blood flow (CBF) calculation and venous hyperintensity determination; venous signal intensity and a categorical venous score (three raters; 0 = no hyperintensity, 1 = focal hyperintensity, and 2 = diffuse hyperintensity) were recorded. Flow velocity in cervical internal carotid artery segments was determined from phase contrast data (v enc = 40 cm/s) and whole-brain oxygen extraction fraction (OEF) was determined from T 2-relaxation-under-spin-tagging MRI. Cerebral metabolic rate of oxygen was calculated as the product of OEF, CBF, and blood oxygen content. ASL venous hyperintensities were significantly (p < 0.001) more prevalent in SCA (65%) relative to control (6%) participants and were associated with elevated flow velocities (p = 0.03). CBF (p < 0.001), but not OEF, increased with increasing hyperintensity score. Prospective trials that evaluate this construct as a possible marker of impaired oxygen delivery and stroke risk may be warranted