172 research outputs found

    Parity sheaves and tilting modules

    No full text
    a

    Cohomology of the minimal nilpotent orbit

    Full text link
    We compute the integral cohomology of the minimal non-trivial nilpotent orbit in a complex simple (or quasi-simple) Lie algebra. We find by a uniform approach that the middle cohomology group is isomorphic to the fundamental group of the sub-root system generated by the long simple roots. The modulo β„“\ell reduction of the Springer correspondent representation involves the sign representation exactly when β„“\ell divides the order of this cohomology group. The primes dividing the torsion of the rest of the cohomology are bad primes.Comment: 29 pages, v2 : Leray-Serre spectral sequence replaced by Gysin sequence only, corrected typo

    Emergence of terpene cyclization in Artemisia annua

    Get PDF
    The emergence of terpene cyclization was critical to the evolutionary expansion of chemical diversity yet remains unexplored. Here we report the first discovery of an epistatic network of residues that controls the onset of terpene cyclization in Artemisia annua. We begin with amorpha-4,11-diene synthase (ADS) and (E)-b-farnesene synthase (BFS), a pair of terpene synthases that produce cyclic or linear terpenes, respectively. A library of B27,000 enzymes is generated by breeding combinations of natural amino-acid substitutions from the cyclic into the linear producer. We discover one dominant mutation is sufficient to activate cyclization, and together with two additional residues comprise a network of strongly epistatic interactions that activate, suppress or reactivate cyclization. Remarkably, this epistatic network of equivalent residues also controls cyclization in a BFS homologue from Citrus junos. Fitness landscape analysis of mutational trajectories provides quantitative insights into a major epoch in specialized metabolism

    Antibacterial activity of Artemisia nilagirica leaf extracts against clinical and phytopathogenic bacteria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The six organic solvent extracts of <it>Artemisia nilagirica </it>were screened for the potential antimicrobial activity against phytopathogens and clinically important standard reference bacterial strains.</p> <p>Methods</p> <p>The agar disk diffusion method was used to study the antibacterial activity of <it>A. nilagirica </it>extracts against 15 bacterial strains. The Minimum Inhibitory Concentration (MIC) of the plant extracts were tested using two fold agar dilution method at concentrations ranging from 32 to 512 ΞΌg/ml. The phytochemical screening of extracts was carried out for major phytochemical derivatives in <it>A. nilagirica</it>.</p> <p>Results</p> <p>All the extracts showed inhibitory activity for gram-positive and gram-negative bacteria except for <it>Klebsiella pneumoniae, Enterococcus faecalis </it>and <it>Staphylococcus aureus</it>. The hexane extract was found to be effective against all phytopathogens with low MIC of 32 ΞΌg/ml and the methanol extract exhibited a higher inhibition activity against <it>Escherichia coli, Yersinia enterocolitica, Salmonella typhi</it>, <it>Enterobacter aerogenes</it>, <it>Proteus vulgaris</it>, <it>Pseudomonas aeruginosa </it>(32 ΞΌg/ml), <it>Bacillus subtilis </it>(64 ΞΌg/ml) and <it>Shigella flaxneri </it>(128 ΞΌg/ml). The phytochemical screening of extracts answered for the major derivative of alkaloids, amino acids, flavonoids, phenol, quinines, tannins and terpenoids.</p> <p>Conclusion</p> <p>All the extracts showed antibacterial activity against the tested strains. Of all, methanol and hexane extracts showed high inhibition against clinical and phytopathogens, respectively. The results also indicate the presence of major phytochemical derivatives in the <it>A. nilagirica </it>extracts. Hence, the isolation and purification of therapeutic potential compounds from <it>A. nilagirica </it>could be used as an effective source against bacterial diseases in human and plants.</p

    Amphipathic DNA polymers exhibit antiviral activity against systemic Murine Cytomegalovirus infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phosphorothioated oligonucleotides (PS-ONs) have a sequence-independent, broad spectrum antiviral activity as amphipathic polymers (APs) and exhibit potent in vitro antiviral activity against a broad spectrum of herpesviruses: HSV-1, HSV-2, HCMV, VZV, EBV, and HHV-6A/B, and in vivo activity in a murine microbiocide model of genital HSV-2 infection. The activity of these agents against animal cytomegalovirus (CMV) infections in vitro and in vivo was therefore investigated.</p> <p>Results</p> <p>In vitro, a 40 mer degenerate AP (REP 9) inhibited both murine CMV (MCMV) and guinea pig CMV (GPCMV) with an IC<sub>50 </sub>of 0.045 ΞΌM and 0.16 ΞΌM, respectively, and a 40 mer poly C AP (REP 9C) inhibited MCMV with an IC<sub>50 </sub>of 0.05 ΞΌM. Addition of REP 9 to plaque assays during the first two hours of infection inhibited 78% of plaque formation whereas addition of REP 9 after 10 hours of infection did not significantly reduce the number of plaques, indicating that REP 9 antiviral activity against MCMV occurs at early times after infection. In a murine model of CMV infection, systemic treatment for 5 days significantly reduced virus replication in the spleens and livers of infected mice compared to saline-treated control mice. REP 9 and REP 9C were administered intraperitoneally for 5 consecutive days at 10 mg/kg, starting 2 days prior to MCMV infection. Splenomegaly was observed in infected mice treated with REP 9 but not in control mice or in REP 9 treated, uninfected mice, consistent with mild CpG-like activity. When REP 9C (which lacks CpG motifs) was compared to REP 9, it exhibited comparable antiviral activity as REP 9 but was not associated with splenomegaly. This suggests that the direct antiviral activity of APs is the predominant therapeutic mechanism <it>in vivo</it>. Moreover, REP 9C, which is acid stable, was effective when administered orally in combination with known permeation enhancers.</p> <p>Conclusion</p> <p>These studies indicate that APs exhibit potent, well tolerated antiviral activity against CMV infection in vivo and represent a new class of broad spectrum anti-herpetic agents.</p

    Antimicrobial and Efflux Pump Inhibitory Activity of Caffeoylquinic Acids from Artemisia absinthium against Gram-Positive Pathogenic Bacteria

    Get PDF
    Background: Traditional antibiotics are increasingly suffering from the emergence of multidrug resistance amongst pathogenic bacteria leading to a range of novel approaches to control microbial infections being investigated as potential alternative treatments. One plausible antimicrobial alternative could be the combination of conventional antimicrobial agents/antibiotics with small molecules which block multidrug efflux systems known as efflux pump inhibitors. Bioassay-driven purification and structural determination of compounds from plant sources have yielded a number of pump inhibitors which acted against gram positive bacteria. Methodology/Principal Findings: In this study we report the identification and characterization of 4β€²,5β€²-O-dicaffeoylquinic acid (4β€²,5β€²-ODCQA) from Artemisia absinthium as a pump inhibitor with a potential of targeting efflux systems in a wide panel of Gram-positive human pathogenic bacteria. Separation and identification of phenolic compounds (chlorogenic acid, 3β€²,5β€²-ODCQA, 4β€²,5β€²-ODCQA) was based on hyphenated chromatographic techniques such as liquid chromatography with post column solid-phase extraction coupled with nuclear magnetic resonance spectroscopy and mass spectroscopy. Microbial susceptibility testing and potentiation of well know pump substrates revealed at least two active compounds; chlorogenic acid with weak antimicrobial activity and 4β€²,5β€²-ODCQA with pump inhibitory activity whereas 3β€²,5β€²-ODCQA was ineffective. These intitial findings were further validated with checkerboard, berberine accumulation efflux assays using efflux-related phenotypes and clinical isolates as well as molecular modeling methodology. Conclusions/Significance: These techniques facilitated the direct analysis of the active components from plant extracts, as well as dramatically reduced the time needed to analyze the compounds, without the need for prior isolation. The calculated energetics of the docking poses supported the biological information for the inhibitory capabilities of 4β€²,5β€²-ODCQA and furthermore contributed evidence that CQAs show a preferential binding to Major Facilitator Super family efflux systems, a key multidrug resistance determinant in gram-positive bacteria.National Institutes of Health (U.S.) (grant R01GM59903)National Institutes of Health (U.S.) (grant R01AI050875)Netherlands Organization for Scientific Research (VICI grant 700.56.442)Massachusetts Technology Transfer Center (MTTC)National Institutes of Health (U.S.) (grant 5U54MH084690-02

    Characterization of Coastal Urban Watershed Bacterial Communities Leads to Alternative Community-Based Indicators

    Get PDF
    BACKGROUND: Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring. METHODOLOGY/PRINCIPAL FINDINGS: Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomic units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and alpha-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC:A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies. CONCLUSIONS/SIGNIFICANCE: This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health

    Pilot-scale biofiltration at a materials recovery facility: The impact on bioaerosol control

    Get PDF
    This study investigated the performance of four pilot-scale biofilters for the removal of bioaerosols from waste airstreams in a materials recovery facility (MRF) based in Leeds, UK. A six-stage Andersen sampler was used to measure the concentrations of four groups of bioaerosols (Aspergillus fumigatus, total fungi, total mesophilic bacteria and Gram negative bacteria) in the airstream before and after passing through the biofilters over a period of 11 months. The biofilters achieved average removal efficiency (RE) of 70% (35 to 97%) for A. fumigatus, 71% (35 to 94%) for total fungi, 68% (47 to 86%) for total mesophilic bacteria and 50% (-4 to 85%) for Gram negative bacteria, provided that the inlet concentration was high (103–105 - cfu mοΏ½3), which is the case for most waste treatment facilities. The performance was highly variable at low inlet concentration with some cases showing an increase in outlet concentrations, suggesting that biofilters had the potential to be net emitters of bioaerosols. The gas phase residence time did not appear to have any statistically significant impact on bioaerosol removal efficiency. Particle size distribution varied between the inlet and outlet air, with the outlet having a greater proportion of smaller sized particles that represent a greater human health risk as they can penetrate deep into the respiratory system where gaseous exchange occurs. However, the outlet concentrations were low and would further be diluted by wind in full scale applications. In conclusion, this study shows that biofilters designed and operated for odour degradation can also achieve significant bioaerosol control in waste gas
    • …
    corecore