139 research outputs found

    Dynamics of pairwise motions

    Get PDF
    We derive a simple closed-form expression, relating \vs(r) -- the mean relative velocity of pairs of galaxies at fixed separation rr -- to the two-point correlation function of mass density fluctuations, ξ(r)\xi(r). We compare our analytic model for \vs(r) with N-body simulations, and find excellent agreement in the entire dynamical range probed by the simulations (0.1 \lsim \xi \lsim 1000). Our results can be used to estimate the cosmological density parameter, \Om, directly from redshift-distance surveys, like Mark III.Comment: 10 pages 2 Figs., submitted to ApJ Let

    Streaming velocities as a dynamical estimator of Omega

    Full text link
    It is well known that estimating the pairwise velocity of galaxies, v_{12}, from the redshift space galaxy correlation function is difficult because this method is highly sensitive to the assumed model of the pairwise velocity dispersion. Here we propose an alternative method to estimate v_{12} directly from peculiar velocity samples, which contain redshift-independent distances as well as galaxy redshifts. In contrast to other dynamical measures which determine beta = sigma_8 x Omega^{0.6}, our method can provide an estimate of (sigma_8)^2 x Omega^{0.6} for a range of sigma_8 (here Omega is the cosmological mass density parameter while sigma_8 is the standard normalization parameter for the spectrum of matter density fluctuations). We demonstrate how to measure this quantity from realistic catalogues.Comment: 8 pages of text, 4 figures Subject headings: Cosmology: theory - observation - peculiar velocities: large scale flows Last name of one of the authors was misspelled. It is now corrected. Otherwise the manuscript is identical to its original versio

    Evidence for a low-density Universe from the relative velocities of galaxies

    Full text link
    The motions of galaxies can be used to constrain the cosmological density parameter Omega and the clustering amplitude of matter on large scales. The mean relative velocity of galaxy pairs, estimated from the Mark III survey, indicates that Omega = 0.35 +0.35/-0.25. If the clustering of galaxies is unbiased on large scales, Omega = 0.35 +/- 0.15, so that an unbiased Einstein-de Sitter model (Omega = 1) is inconsistent with the data.Comment: 12 pages, 2 figures, to appear in the Jan.7 issue of ``Science''; In the original version, the title appeared twice. This problem has now been corrected. No other changes were mad

    Measuring Omega with Galaxy Streaming Velocities

    Get PDF
    The mean pairwise velocity of galaxies has traditionally been estimated from the redshift space galaxy correlation function. This method is notorious for being highly sensitive to the assumed model of the pairwise velocity dispersion. Here we propose an alternative method to estimate the streaming velocity directly from peculiar velocity samples, which contain redshift-independent distances as well as galaxy redshifts. This method can provide an estimate of Ω0.6σ82\Omega^{0.6}\sigma_8^2 for a range of σ8\sigma_8 where Ω\Omega is the cosmological density parameter, while σ8\sigma_8 is the standard normalization for the power spectrum of density fluctuations. We demonstrate how to measure this quantity from realistic catalogues and identify the main sources of bias and errorsComment: Proceedings of New Worlds in Astroparticle Physics, 6 pages, 2 figure

    Cosmic ray acceleration at supergalactic accretion shocks: a new upper energy limit due to a finite shock extension

    Full text link
    Accretion flows onto supergalactic-scale structures are accompanied with large spatial scale shock waves. These shocks were postulated as possible sources of ultra-high energy cosmic rays. The highest particle energies were expected for perpendicular shock configuration in the so-called "Jokipii diffusion limit", involving weakly turbulent conditions in the large-scale magnetic field imbedded in the accreting plasma. For such configuration we discuss the process limiting the highest energy that particles can obtain in the first-order Fermi acceleration process due to finite shock extensions to the sides, along and across the mean magnetic field. Cosmic ray outflow along the shock structure can substantially lower (below ~10^18 eV for protons) the upper particle energy limit for conditions considered for supergalactic shocks.Comment: A&A, accepte

    Stochastic Biasing and Weakly Non-linear Evolution of Power Spectrum

    Get PDF
    Distribution of galaxies may be a biased tracer of the dark matter distribution and the relation between the galaxies and the total mass may be stochastic, non-linear and time-dependent. Since many observations of galaxy clustering will be done at high redshift, the time evolution of non-linear stochastic biasing would play a crucial role for the data analysis of the future sky surveys. In this paper, we develop the weakly non-linear analysis and attempt to clarify the non-linear feature of the stochastic biasing. We compute the one-loop correction of the power spectrum for the total mass, the galaxies and their cross correlation. Assuming the local functional form for the initial galaxy distribution, we investigate the time evolution of the biasing parameter and the correlation coefficient. On large scales, we first find that the time evolution of the biasing parameter could deviate from the linear prediction in presence of the initial skewness. However, the deviation can be reduced when the initial stochasticity exists. Next, we focus on the quasi-linear scales, where the non-linear growth of the total mass becomes important. It is recognized that the scale-dependence of the biasing dynamically appears and the initial stochasticity could affect the time evolution of the scale-dependence. The result is compared with the recent N-body simulation that the scale-dependence of the halo biasing can appear on relatively large scales and the biasing parameter takes the lower value on smaller scales. Qualitatively, our weakly non-linear results can explain this trend if the halo-mass biasing relation has the large scatter at high redshift.Comment: 29pages, 7 postscript figures, submitted to Ap

    Dipole anisotropies of IRAS galaxies and the contribution of a large-scale local void

    Get PDF
    Recent observations of dipole anisotropies show that the velocity of the Local Group (\Vec v_{\rm G}) induced by the clustering of IRAS galax ies has an amplitude and direction similar to those of the velocity of Cosmic Microwave Background dipole anisotropy (\Vec v_{\rm CMB}), but the difference | \Vec v_{\rm G} - \Vec v_{\rm CMB} | is still 170\sim 170 km/s, which is about 28% of |\Vec v_{\rm CMB} |. Here we consider the possibility that the origin of this difference comes from a hypothetical large-scale local void, with which we can account for the accelerating behavior of type Ia supernovae due to the spatial inhomogeneity of the Hubble constant without dark energies and derive the constraint to the model parameters of the local void. It is found as a result that the distance between the Local Group and the center of the void must be (1020)h1(10 -- 20) h^{-1} Mpc, whose accurate value depends on the background model parameters.Comment: 13 pages, 1 figure, to be published in ApJ 584, No.2 (2003

    Tailing Dam Zelazny Most Environmental Hazard

    Get PDF
    The factors governing the geotechnical stability of copper tailing dam Żelazny Most, the largest in Europe, have been discussed. The efficiency of pumping wells barrier against outflow of contaminated ground water has been predicted for a period of next 15 years

    Large-k Limit of Multi-Point Propagators in the RG Formalism

    Full text link
    Renormalized versions of cosmological perturbation theory have been very successful in recent years in describing the evolution of structure formation in the weakly non-linear regime. The concept of multi-point propagators has been introduced as a tool to quantify the relation between the initial matter distribution and the final one and to push the validity of the approaches to smaller scales. We generalize the n-point propagators that have been considered until now to include a new class of multi-point propagators that are relevant in the framework of the renormalization group formalism. The large-k results obtained for this general class of multi-point propagators match the results obtained earlier both in the case of Gaussian and non-Gaussian initial conditions. We discuss how the large-k results can be used to improve on the accuracy of the calculations of the power spectrum and bispectrum in the presence of initial non-Gaussianities.Comment: 30 page

    Skewness as a probe of non-Gaussian initial conditions

    Get PDF
    We compute the skewness of the matter distribution arising from non-linear evolution and from non-Gaussian initial perturbations. We apply our result to a very generic class of models with non-Gaussian initial conditions and we estimate analytically the ratio between the skewness due to non-linear clustering and the part due to the intrinsic non-Gaussianity of the models. We finally extend our estimates to higher moments.Comment: 5 pages, 2 ps-figs., accepted for publication in PRD, rapid com
    corecore