11 research outputs found

    Regulation of the ‘molecular scissor’ ADAM10 by tetraspanin Tspan15

    Get PDF
    ADAM10 is a ubiquitously-expressed ‘molecular scissor’ that regulates a variety of important transmembrane proteins by proteolytically cleaving their extracellular regions. The cellular localisation and substrate specificity of ADAM10 is regulated by one of six tetraspanin membrane proteins, termed TspanC8s, comprising Tspan5, 10, 14, 15, 17 and 33. This has led to the hypothesis that ADAM10 exists as six different scissors, depending on its interacting TspanC8. This thesis investigates the function of Tspan15, which is of interest due to its recent implication in cancer, deep vein thrombosis and bacterial infection. The new discoveries of this study are as follows. (1) Tspan15 expression is dependent on ADAM10. (2) Tspan15 is required for cleavage of neural-, epithelial- and vascular endothelial-cadherin in cell lines. (3) Two of four newly-generated anti-Tspan15 monoclonal antibodies have inhibitory activity directed against ADAM10-mediated cleavage of VE-cadherin, which cannot be explained by recognition of different epitopes or differential effects on Tspan15 internalisation or ADAM10 expression. (4) Loss of ADAM10 in human endothelial cells promotes migration, increases proliferation and impairs network formation, but loss of Tspan15 has no effect. These findings support the six-scissor hypothesis, suggest that the major function of Tspan15 is to regulate ADAM10, and demonstrate the therapeutic potential of TspanC8 monoclonal antibodies

    Scissor sisters::regulation of ADAM10 by the TspanC8 tetraspanins

    Get PDF
    A disintegrin and metalloprotease 10 (ADAM10) is a ubiquitously expressed transmembrane protein which is essential for embryonic development through activation of Notch proteins. ADAM10 regulates over 40 other transmembrane proteins and acts as a ‘molecular scissor’ by removing their extracellular regions. ADAM10 is also a receptor for α-toxin, a major virulence factor of Staphylococcus aureus. Owing to the importance of its substrates, ADAM10 is a potential therapeutic target for cancer, neurodegenerative diseases such as Alzheimer's and prion diseases, bacterial infection and inflammatory diseases such as heart attack, stroke and asthma. However, targetting ADAM10 is likely to result in toxic side effects. The tetraspanins are a superfamily of 33 four-transmembrane proteins in mammals which interact with and regulate specific partner proteins within membrane nanodomains. Tetraspanins appear to have a cone-shaped structure with a cholesterol-binding cavity, which may enable tetraspanins to undergo cholesterol-regulated conformational change. An emerging paradigm for tetraspanin function is the regulation of ADAM10 by the TspanC8 subgroup of tetraspanins, namely Tspan5, 10, 14, 15, 17 and 33. This review will describe how TspanC8s are required for ADAM10 trafficking from the endoplasmic reticulum and its enzymatic maturation. Moreover, different TspanC8s localise ADAM10 to different subcellular localisations and may cause ADAM10 to adopt distinct conformations and cleavage of distinct substrates. We propose that ADAM10 should now be regarded as six different scissor proteins depending on the interacting TspanC8. Therapeutic targetting of specific TspanC8/ADAM10 complexes could allow ADAM10 targetting in a cell type- or substrate-specific manner, to treat certain diseases while minimising toxicity.</jats:p

    ADAM10-interacting tetraspanins Tspan5 and Tspan17 regulate VE-cadherin expression and promote T lymphocyte transmigration

    Get PDF
    Abstract The recruitment of blood leukocytes across the endothelium to sites of tissue infection is central to inflammation, but also promotes chronic inflammatory diseases. A disintegrin and metalloproteinase 10 (ADAM10) is a ubiquitous transmembrane molecular scissor that is implicated in leukocyte transmigration by proteolytically cleaving its endothelial substrates. These include VE-cadherin, a homotypic adhesion molecule that regulates endothelial barrier function, and transmembrane chemokines CX3CL1 and CXCL16, which have receptors on leukocytes. However, a definitive role for endothelial ADAM10 in transmigration of freshly isolated primary leukocytes under flow has not been demonstrated, and the relative importance of distinct ADAM10 substrates is unknown. Emerging evidence suggests that ADAM10 can be regarded as six different molecular scissors with different substrate specificities, depending on which of six TspanC8 tetraspanins it is associated with, but TspanC8s remain unstudied in leukocyte transmigration. In the current study, ADAM10 knockdown on primary HUVECs was found to impair transmigration of freshly isolated human peripheral blood T lymphocytes, but not neutrophils or B lymphocytes, in an in vitro flow assay. This impairment was due to delayed transmigration rather than a complete block, and was overcome in the presence of neutrophils. Transmigration of purified lymphocytes was dependent on ADAM10 regulation of VE-cadherin, but not CX3CL1 and CXCL16. Tspan5 and Tspan17, the two most closely related TspanC8s by sequence, were the only TspanC8s that regulated VE-cadherin expression and were required for lymphocyte transmigration. Therefore endothelial Tspan5- and Tspan17-ADAM10 complexes may regulate inflammation by maintaining normal VE-cadherin expression and promoting T lymphocyte transmigration.</jats:p

    Quantitative Phosphoproteomics Reveals a Role for Collapsin Response Mediator Protein 2 in PDGF-Induced Cell Migration

    Get PDF
    AbstractThe Platelet Derived Growth Factor (PDGF) family of ligands have well established functions in the induction of cell proliferation and migration during development, tissue homeostasis and interactions between tumours and stroma. However, the mechanisms by which these actions are executed are incompletely understood. Here we report a differential phosphoproteomics study, using a SILAC approach, of PDGF-stimulated mouse embryonic fibroblasts (MEFs). 116 phospho-sites were identified as up-regulated and 45 down-regulated in response to PDGF stimulation. These encompass proteins involved in cell adhesion, cytoskeleton regulation and vesicle-mediated transport, significantly expanding the range of proteins implicated in PDGF signalling pathways. Included in the down-regulated class was the microtubule bundling protein Collapsin Response Mediator Protein 2 (CRMP2). In response to stimulation with PDGF, CRMP2 was dephosphorylated on Thr514, an event known to increase CRMP2 activity. This was reversed in the presence of micromolar concentrations of the protein phosphatase inhibitor okadaic acid, implicating PDGF-induced activation of protein phosphatase 1 (PP1) in CRMP2 regulation. Depletion of CRMP2 resulted in impairment of PDGF-mediated cell migration in an in vitro wound healing assay. These results show that CRMP2 is required for PDGF-directed cell migration in vitro.</jats:p

    Changes to lung surfactant monolayers upon exposure to gas phase ozone observed using X-ray and neutron reflectivity

    Get PDF
    Exposure to the secondary pollutant ozone in ambient air is associated with adverse health effects when inhaled. In this work we use surface pressure measurements, combined with X-ray and neutron reflection, to observe changes in a layer of lung surfactant at the air water interface when exposed to gas phase ozone. The results demonstrate that the layer reacts with ozone changing its physical characteristics. A slight loss of material, a significant thinning of the layer and increased hydration of the surfactant material is observed. The results support the hypothesis that unsaturated lipids present in lung surfactant are still susceptible to rapid reaction with ozone and the reaction changes the properties of the interfacial layer

    Regulation of Leukocytes by TspanC8 Tetraspanins and the “Molecular Scissor” ADAM10

    Get PDF
    A disintegrin and metalloproteinase 10 (ADAM10) is a ubiquitous transmembrane protein that functions as a “molecular scissor” to cleave the extracellular regions from its transmembrane target proteins. ADAM10 is well characterized as the ligand-dependent activator of Notch proteins, which control cell fate decisions. Indeed, conditional knockouts of ADAM10 in mice reveal impaired B-, T-, and myeloid cell development and/or function. ADAM10 cleaves many other leukocyte-expressed substrates. On B-cells, ADAM10 cleavage of the low-affinity IgE receptor CD23 promotes allergy and asthma, cleavage of ICOS ligand impairs antibody responses, and cleavage of the BAFF–APRIL receptor transmembrane activator and CAML interactor, and BAFF receptor, reduce B-cell survival. On microglia, increased ADAM10 cleavage of a rare variant of the scavenger receptor triggering receptor expressed on myeloid cells 2 may increase susceptibility to Alzheimer’s disease. We and others recently showed that ADAM10 interacts with one of six different regulatory tetraspanin membrane proteins, which we termed the TspanC8 subgroup, comprising Tspan5, Tspan10, Tspan14, Tspan15, Tspan17, and Tspan33. The TspanC8s are required for ADAM10 exit from the endoplasmic reticulum, and emerging evidence suggests that they dictate ADAM10 subcellular localization and substrate specificity. Therefore, we propose that ADAM10 should not be regarded as a single scissor, but as six different scissors with distinct substrate specificities, depending on the associated TspanC8. In this review, we collate recent transcriptomic data to present the TspanC8 repertoires of leukocytes, and we discuss the potential role of the six TspanC8/ADAM10 scissors in leukocyte development and function

    The tetraspanin Tspan15 is an essential subunit of an ADAM10 scissor complex

    Get PDF
    A disintegrin and metalloprotease 10 (ADAM10) is a transmembrane protein essential for embryonic development, and its dysregulation underlies disorders such as cancer, Alzheimer's disease, and inflammation. ADAM10 is a molecular scissor that proteolytically cleaves the extracellular region from >100 substrates, including Notch, amyloid precursor protein, cadherins, growth factors, and chemokines. ADAM10 has been recently proposed to function as six distinct scissors with different substrates, depending on its association with one of six regulatory tetraspanins, termed TspanC8s. However, it remains unclear to what degree ADAM10 function critically depends on a TspanC8 partner, and a lack of monoclonal antibodies specific for most TspanC8s has hindered investigation of this question. To address this knowledge gap, here we designed an immunogen to generate the first monoclonal antibodies targeting Tspan15, a model TspanC8. The immunogen was created in an ADAM10-knockout mouse cell line stably overexpressing human Tspan15, because we hypothesized that expression in this cell line would expose epitopes that are normally blocked by ADAM10. Following immunization of mice, this immunogen strategy generated four Tspan15 antibodies. Using these antibodies, we show that endogenous Tspan15 and ADAM10 co-localize on the cell surface, that ADAM10 is the principal Tspan15-interacting protein, that endogenous Tspan15 expression requires ADAM10 in cell lines and primary cells, and that a synthetic ADAM10/Tspan15 fusion protein is a functional scissor. Furthermore, two of the four antibodies impaired ADAM10/Tspan15 activity. These findings suggest that Tspan15 directly interacts with ADAM10 in a functional scissor complex

    The Platelet Collagen Receptor GPVI Is Cleaved by Tspan15/ADAM10 and Tspan33/ADAM10 Molecular Scissors

    No full text
    The platelet-activating collagen receptor GPVI represents the focus of clinical trials as an antiplatelet target for arterial thrombosis, and soluble GPVI is a plasma biomarker for several human diseases. A disintegrin and metalloproteinase 10 (ADAM10) acts as a ‘molecular scissor’ that cleaves the extracellular region from GPVI and many other substrates. ADAM10 interacts with six regulatory tetraspanin membrane proteins, Tspan5, Tspan10, Tspan14, Tspan15, Tspan17 and Tspan33, which are collectively termed the TspanC8s. These are emerging as regulators of ADAM10 substrate specificity. Human platelets express Tspan14, Tspan15 and Tspan33, but which of these regulates GPVI cleavage remains unknown. To address this, CRISPR/Cas9 knockout human cell lines were generated to show that Tspan15 and Tspan33 enact compensatory roles in GPVI cleavage, with Tspan15 bearing the more important role. To investigate this mechanism, a series of Tspan15 and GPVI mutant expression constructs were designed. The Tspan15 extracellular region was found to be critical in promoting GPVI cleavage, and appeared to achieve this by enabling ADAM10 to access the cleavage site at a particular distance above the membrane. These findings bear implications for the regulation of cleavage of other ADAM10 substrates, and provide new insights into post-translational regulation of the clinically relevant GPVI protein
    corecore