70 research outputs found

    Die Juden Alexandriens und ihr Agon um Zugehörigkeit in den Jahren 38 bis 41 n. Chr.

    Get PDF
    [EN] The invention relates to a material comprising oligoglycine tectomers and nanowires. This material is useful as an electrode, as a conductive and transparent hybrid material, and as a pH sensor, as well as in biomedical applications.[ES] Material que comprende tectĂłmeros de oligoglicina y nanohilos. Este material es Ăștil como electrodo, como material hĂ­brido conductor y transparente, y como sensor de pH.Peer reviewedConsejo Superior de Investigaciones CientĂ­ficas (España), Universidad de Zaragoza, University of SurreyE Solicitud de patente europe

    Importance of Capillary Forces in the Assembly of Carbon Nanotubes in a Polymer Colloid Lattice

    Get PDF
    We highlight the significance of capillary pressure in the directed assembly of nanorods in ordered arrays of colloidal particles. Specifically, we discuss mechanisms for the assembly of carbon nanotubes at the interstitial sites between latex polymer particles during composite film formation. Our study points to general design rules to be considered to optimize the ordering of nanostructures within such polymer matrices. In particular, gaining an understanding of the role of capillary forces is critical. Using a combination of electron microscopy and atomic force microscopy, we show that the capillary forces acting on the latex particles during the drying process are sufficient to bend carbon nanotubes. The extent of bending depends on the flexural rigidity of the carbon nanotubes and whether or not they are present as bundled ensembles. We also show that in order to achieve long-range ordering of the nanotubes templated by the polymer matrix, it is necessary for the polymer to be sufficiently mobile to ensure that the nanotubes are frozen into the ordered network when the film is formed and the capillary forces are no longer dominant. In our system, the polymer is plasticized by the addition of surfactant, so that it is sufficiently mobile at room temperature. Interestingly, the carbon nanotubes effectively act as localized pressure sensors and, as such, the study experimentally verifies theoretical predictions that the Published in Langmuir, 2012, 28 (21), pp 8266-8274 2 emergence of capillary forces during the latex films formation is greater than approximately 10 -8 N

    Selective mechanical transfer deposition of Langmuir graphene films for high-performance silver nanowire hybrid electrodes

    Get PDF
    In this work we present silver nanowire hybrid electrodes, prepared through the addition of small quantities of pristine graphene by mechanical transfer deposition from surface-assembled Langmuir films. This technique is a fast, efficient, and facile method for modifying the opto-electronic performance of AgNW films. We demonstrate that it is possible to use this technique to perform two-step device production by selective patterning of the stamp used, leading to controlled variation in the local sheet resistance across a device. This is particularly attractive for producing extremely low-cost sensors on arbitrarily large scales. Our aim is to address some of the concerns surrounding the use of AgNW films as replacements for indium tin oxide (ITO); namely the use of scarce materials and poor stability of AgNWs against flexural and environmental degradation

    Finite-size scaling in silver nanowire films: design considerations for practical devices

    Get PDF
    We report the first application of finite-size scaling theory to nanostructured percolating networks, using silver nanowire (AgNW) films as a model system for experiment and simulation. AgNWs have been shown to be a prime candidate for replacing Indium Tin Oxide (ITO) in applications such as capacitive touch sensing. While their performance as large area films is well-studied, the production of working devices involves patterning of the films to produce isolated electrode structures, which exhibit finite-size scaling when these features are sufficiently small. We demonstrate a generalised method for understanding this behaviour in practical rod percolation systems, such as AgNW films, and study the effect of systematic variation of the length distribution of the percolating material. We derive a design rule for the minimum viable feature size in a device pattern, relating it to parameters which can be derived from a transmittance-sheet resistance data series for the material in question. This understanding has direct implications for the industrial adoption of silver nanowire electrodes in applications where small features are required including single-layer capacitive touch sensors, LCD and OLED display panels

    Pristine carbon nanotube scaffolds for the growth of chondrocytes

    Get PDF
    The effective growth of chondrocytes and the formation of cartilage is demonstrated on scaffolds of aligned carbon nanotubes; as two dimensional sheets and on three dimensional textiles. Raman spectroscopy is used to confirm the presence of chondroitin sulfate, which is critical in light of the unreliability of traditional dye based assays for carbon nanomaterial substrates. The textile exhibits a very high affinity for chondrocyte growth and could present a route to implantable, flexible cartilage scaffolds with tuneable mechanical properties

    Ultrasensitive strain gauges enabled by graphene-stabilized silicone emulsions

    Get PDF
    Here, an approach is presented to incorporate graphene nanosheets into a silicone rubber matrix via solid stabilization of oil‐in‐water emulsions. These emulsions can be cured into discrete, graphene‐coated silicone balls or continuous, elastomeric films by controlling the degree of coalescence. The electromechanical properties of the resulting composites as a function of interdiffusion time and graphene loading level are characterized. With conductivities approaching 1 S m−1, elongation to break up to 160%, and a gauge factor of ≈20 in the low‐strain linear regime, small strains such as pulse can be accurately measured. At higher strains, the electromechanical response exhibits a robust exponential dependence, allowing accurate readout for higher strain movements such as chest motion and joint bending. The exponential gauge factor is found to be ≈20, independent of loading level and valid up to 80% strain; this consistent performance is due to the emulsion‐templated microstructure of the composites. The robust behavior may facilitate high‐strain sensing in the nonlinear regime using nanocomposites, where relative resistance change values in excess of 107 enable highly accurate bodily motion monitoring

    Silver nanowires on carbon nanotube aerogel sheets for flexible, transparent electrodes

    Get PDF
    Flexible, free-standing transparent conducting electrodes (TCEs) with simultaneously tunable transmittances up to 98% and sheet resistances down to 11 ℩/sq were prepared by a facile spray-coating method of silver nanowires (AgNWs) onto dry-spun multiwall carbon nanotube (MWNT) aerogels. Counterintuitively, the transmittance of the hybrid electrodes can be increased as the mass density of AgNWs within the MWNT aerogels increases, however, the final achievable transmittance depends on the initial transparency of the MWNT aerogels. Simultaneously, a strong decrease in sheet resistance is obtained when AgNWs form a percolated network along the MWNT aerogel. Additionally, anisotropic reduction in sheet resistance and polarized transmittance of AgNW/MWNT aerogels is achieved with this method. The final AgNW/MWNT hybrid TCEs transmittance and sheet resistance can be fine-tuned by spray-coating mechanisms or by choosing initial MWNT aerogel density. Thus, a wide range of AgNW/MWNT hybrid TCEs with optimized optoelectronic properties can be achieved depending of the requirements needed. Finally, the free-standing AgNW/MWNT hybrid TCEs can be laminated onto a wide range of substrates without the need of a bonding aid
    • 

    corecore