195 research outputs found
Imaging atom-clusters by hard x-ray free electron lasers
The ingenious idea of single molecule imaging by hard x-ray Free Electron
Laser (X-FEL) pulses was recently proposed by Neutze et al.
[Nature,406,752(2000)]. However, in their numerical modelling of the Coulomb
explosion several interactions were neglected and no reconstruction of the
atomic structure was given. In this work we carried out improved molecular
dynamics calculations including all quantum processes which affect the
explosion. Based on this time evolution we generated composite elastic
scattering patterns, and by using Fienup's algorithm successfully reconstructed
the original atomic structure. The critical evaluation of these results gives
guidelines and sets important conditions for future experiments aiming single
molecule structure solution.Comment: 8 pages, 4 figures, submitted to Europhysics Letter
Hydrodynamic model for expansion and collisional relaxation of x-ray laser-excited multi-component nanoplasma
The irradiation of an atomic cluster with a femtosecond x-ray free-electron
laser pulse results in a nanoplasma formation. This typically occurs within a
few hundreds femtoseconds. By this time the x-ray pulse is over, and the direct
photoinduced processes no longer contributing. All created electrons within the
nanoplasma are thermalized. The nanoplasma thus formed is a mixture of atoms,
electrons and ions of various charges. While expanding, it is undergoing
electron impact ionization and three-body recombination. Below we present a
hydrodynamic model to describe the dynamics of such multi-component nanoplasma.
The model equations are derived by taking the moments of the corresponding
Boltzmann kinetic equations. We include the equations obtained, together with
the source terms due to electron impact ionization and three-body
recombination, in our hydrodynamic solver. Model predictions for a test case:
expanding spherical Ar nanoplasma are obtained. With this model we complete the
two-step approach to simulate x-ray created nanoplasmas, enabling
computationally efficient simulations of their picosecond dynamics. Moreover,
the hydrodynamic framework including collisional processes can be easily
extended for other source terms and then applied to follow relaxation of any
finite non-isothermal multi-component nanoplasma with its components relaxed
into local thermodynamic equilibrium.Comment: 12 pages, 4 figures. This article has been accepted by Physics of
Plasmas. After it is published, it will be found at
http://scitation.aip.org/content/aip/journal/po
Biomolecular imaging and electronic damage using X-ray free-electron lasers
Proposals to determine biomolecular structures from diffraction experiments
using femtosecond X-ray free-electron laser (XFEL) pulses involve a conflict
between the incident brightness required to achieve diffraction-limited atomic
resolution and the electronic and structural damage induced by the
illumination. Here we show that previous estimates of the conditions under
which biomolecular structures may be obtained in this manner are unduly
restrictive, because they are based on a coherent diffraction model that is not
appropriate to the proposed interaction conditions. A more detailed imaging
model derived from optical coherence theory and quantum electrodynamics is
shown to be far more tolerant of electronic damage. The nuclear density is
employed as the principal descriptor of molecular structure. The foundations of
the approach may also be used to characterize electrodynamical processes by
performing scattering experiments on complex molecules of known structure.Comment: 16 pages, 2 figure
Holographic Methods as Local Probes of the Atomic Order in Solids
In the last fifteen years several techniques based on the holographic
principle have been developed for the study of the 3D local order in solids.
These methods use various particles: electrons, hard x-ray photons, gamma
photons, or neutrons to image the atoms. Although the practical realisation of
the various imaging experiments is very different, there is a common thread;
the use of inside reference points for holographic imaging. In this paper we
outline the basics of atomic resolution holography using inside reference
points, especially concentrating to the hard x-ray case. Further, we outline
the experimental requirements and what has been practically realized in the
last decade. At last we give examples of applications and future perspectives.Comment: 14 pages, 6 figure
Effects of radiation damage and inelastic scattering on single-particle imaging of hydrated proteins with an X-ray Free-Electron Laser
We present a computational case study of X-ray single-particle imaging of hydrated proteins on an example of 2-Nitrogenase–Iron protein covered with water layers of various thickness, using a start-to-end simulation platform and experimental parameters of the SPB/SFX instrument at the European X-ray Free-Electron Laser facility. The simulations identify an optimal thickness of the water layer at which the effective resolution for imaging the hydrated sample becomes significantly higher than for the non-hydrated sample. This effect is lost when the water layer becomes too thick. Even though the detailed results presented pertain to the specific sample studied, the trends which we identify should also hold in a general case. We expect these findings will guide future single-particle imaging experiments using hydrated proteins
Fair Near Neighbor Search: Independent Range Sampling in High Dimensions. PODS
Similarity search is a fundamental algorithmic primitive, widely used in many
computer science disciplines. There are several variants of the similarity
search problem, and one of the most relevant is the -near neighbor (-NN)
problem: given a radius and a set of points , construct a data
structure that, for any given query point , returns a point within
distance at most from . In this paper, we study the -NN problem in
the light of fairness. We consider fairness in the sense of equal opportunity:
all points that are within distance from the query should have the same
probability to be returned. In the low-dimensional case, this problem was first
studied by Hu, Qiao, and Tao (PODS 2014). Locality sensitive hashing (LSH), the
theoretically strongest approach to similarity search in high dimensions, does
not provide such a fairness guarantee. To address this, we propose efficient
data structures for -NN where all points in that are near have the
same probability to be selected and returned by the query. Specifically, we
first propose a black-box approach that, given any LSH scheme, constructs a
data structure for uniformly sampling points in the neighborhood of a query.
Then, we develop a data structure for fair similarity search under inner
product that requires nearly-linear space and exploits locality sensitive
filters. The paper concludes with an experimental evaluation that highlights
(un)fairness in a recommendation setting on real-world datasets and discusses
the inherent unfairness introduced by solving other variants of the problem.Comment: Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems (PODS), Pages 191-204, June 202
New Low Accretion-Rate Magnetic Binary Systems and their Significance for the Evolution of Cataclysmic Variables
Discoveries of two new white dwarf plus M star binaries with striking optical
cyclotron emission features from the Sloan Digital Sky Survey (SDSS) brings to
six the total number of X-ray faint, magnetic accretion binaries that accrete
at rates < 10^{-13} Msun/yr, or <1% of the values normally encountered in
cataclysmic variables. This fact, coupled with donor stars that underfill their
Roche lobes and very cool white dwarfs, brand the binaries as post
common-envelope systems whose orbits have not yet decayed to the point of
Roche-lobe contact. They are pre-magnetic CVs, or pre-Polars. The systems
exhibit spin/orbit synchronism and apparently accrete by efficient capture of
the stellar wind from the secondary star, a process that has been dubbed a
``magnetic siphon''. Because of this, period evolution of the binaries will
occur solely by gravitational radiation, which is very slow for periods >3 hr.
Optical surveys for the cyclotron harmonics appear to be the only means of
discovery, so the space density of pre-Polars could rival that of Polars, and
the binaries provide an important channel of progenitors (in addition to the
asynchronous Intermediate Polars). Both physical and SDSS observational
selection effects are identified that may help to explain the clumping of all
six systems in a narrow range of magnetic field strength around 60 MG.Comment: 25 pages, 13 figures, Accepted to Ap
Cover to Volume 3
The fibroblast mitogen platelet-derived growth factor -BB (PDGF-BB) induces a transient expression of the orphan nuclear receptor NR4A1 (also named Nur77, TR3 or NGFIB). The aim of the present study was to investigate the pathways through which NR4A1 is induced by PDGF-BB and its functional role. We demonstrate that in PDGF-BB stimulated NIH3T3 cells, the MEK1/2 inhibitor CI-1040 strongly represses NR4A1 expression, whereas Erk5 downregulation delays the expression, but does not block it. Moreover, we report that treatment with the NF-ÎşB inhibitor BAY11-7082 suppresses NR4A1 mRNA and protein expression. The majority of NR4A1 in NIH3T3 was found to be localized in the cytoplasm and only a fraction was translocated to the nucleus after continued PDGF-BB treatment. Silencing NR4A1 slightly increased the proliferation rate of NIH3T3 cells; however, it did not affect the chemotactic or survival abilities conferred by PDGF-BB. Moreover, overexpression of NR4A1 promoted anchorage-independent growth of NIH3T3 cells and the glioblastoma cell lines U-105MG and U-251MG. Thus, whereas NR4A1, induced by PDGF-BB, suppresses cell growth on a solid surface, it increases anchorage-independent growth
- …