11 research outputs found
A transcriptomic analysis of gene expression in the venom gland of the snake Bothrops alternatus (urutu)
<p>Abstract</p> <p>Background</p> <p>The genus <it>Bothrops </it>is widespread throughout Central and South America and is the principal cause of snakebite in these regions. Transcriptomic and proteomic studies have examined the venom composition of several species in this genus, but many others remain to be studied. In this work, we used a transcriptomic approach to examine the venom gland genes of <it>Bothrops alternatus</it>, a clinically important species found in southeastern and southern Brazil, Uruguay, northern Argentina and eastern Paraguay.</p> <p>Results</p> <p>A cDNA library of 5,350 expressed sequence tags (ESTs) was produced and assembled into 838 contigs and 4512 singletons. BLAST searches of relevant databases showed 30% hits and 70% no-hits, with toxin-related transcripts accounting for 23% and 78% of the total transcripts and hits, respectively. Gene ontology analysis identified non-toxin genes related to general metabolism, transcription and translation, processing and sorting, (polypeptide) degradation, structural functions and cell regulation. The major groups of toxin transcripts identified were metalloproteinases (81%), bradykinin-potentiating peptides/C-type natriuretic peptides (8.8%), phospholipases A<sub>2 </sub>(5.6%), serine proteinases (1.9%) and C-type lectins (1.5%). Metalloproteinases were almost exclusively type PIII proteins, with few type PII and no type PI proteins. Phospholipases A<sub>2 </sub>were essentially acidic; no basic PLA<sub>2 </sub>were detected. Minor toxin transcripts were related to L-amino acid oxidase, cysteine-rich secretory proteins, dipeptidylpeptidase IV, hyaluronidase, three-finger toxins and ohanin. Two non-toxic proteins, thioredoxin and double-specificity phosphatase Dusp6, showed high sequence identity to similar proteins from other snakes. In addition to the above features, single-nucleotide polymorphisms, microsatellites, transposable elements and inverted repeats that could contribute to toxin diversity were observed.</p> <p>Conclusions</p> <p><it>Bothrops alternatus </it>venom gland contains the major toxin classes described for other <it>Bothrops </it>venoms based on trancriptomic and proteomic studies. The predominance of type PIII metalloproteinases agrees with the well-known hemorrhagic activity of this venom, whereas the lower content of serine proteases and C-type lectins could contribute to less marked coagulopathy following envenoming by this species. The lack of basic PLA<sub>2 </sub>agrees with the lower myotoxicity of this venom compared to other <it>Bothrops </it>species with these toxins. Together, these results contribute to our understanding of the physiopathology of envenoming by this species.</p
Natterins, a new class of proteins with kininogenase activity characterlized from Thalassophryne nattereri fish venom
A novel family of proteins with kininogenase activity and unique primary structure was characterized using combined pharmacological, proteomic and transcriptomic approaches of Thalassophryne nattercri fish venom. the major venom components were isolated and submitted to bioassays corresponding to its main effects: nociception and edema. These activities were mostly located in one fraction (MS3), which was further fractionated. the isolated protein, named natterin, was able to induce ederna, nociception and cleave human kininogen and kininogen-derived synthetic peptides, releasing kallidin (Lys-bradykinin). the enzymatic digestion was inhibited by kallikrein inhibitors as Trasylol and TKI. Natterin N-terminal peptide showed no similarity with already known proteins present in databanks. Primary structure of natterin was obtained by a transcriptomic approach using a representative cDNA library constructed from T nattereri venom glands. Several expressed sequence tags (ESTs) were obtained and processed by biomformatics revealing a major group (18%) of related sequences unknown to gene or protein sequence databases. This group included sequences showing the N-terminus of isolated natterin and was named Natterin family. Analysis of this family allowed us to identify five related sequences, which we called natterin 1-4 and P. Natterin I and 2 sequences include the N-terminus of the isolated natterin. Furthermore, internal peptides of natterin 1-3 were found in major spots of whole venom submitted to mass spectrometry/2DGE. Similarly to the ESTs, the complete sequences of natterins did not show any significant similarity with already described tissue kallikreins, kininogenases or any proteinase, all being entirely new. These data present a new task for the knowledge of the action of kininogenases and may help in understanding the mechanisms of T nattereri fish envenoming, which is an important medical problem in North and Northeast of Brazil. (C) 2005 Elsevier SAS. All rights reserved.Inst Butantan, Lab Imunopatol, BR-05503900 São Paulo, BrazilIPEN, CNEN SP, São Paulo, BrazilUniversidade Federal de São Paulo, São Paulo, BrazilUniv Virginia, Charlottesville, VA USAFiocruz MS, BR-21045900 Rio de Janeiro, BrazilUniversidade Federal de São Paulo, EPM, São Paulo, BrazilWeb of Scienc
Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyrosequencing
Background: A long term research goal of venomics, of applied importance for improving current antivenom
therapy, but also for drug discovery, is to understand the pharmacological potential of venoms. Individually or
combined, proteomic and transcriptomic studies have demonstrated their feasibility to explore in depth the
molecular diversity of venoms. In the absence of genome sequence, transcriptomes represent also valuable
searchable databases for proteomic projects.
Results: The venom gland transcriptomes of 8 Costa Rican taxa from 5 genera (Crotalus, Bothrops, Atropoides,
Cerrophidion, and Bothriechis) of pitvipers were investigated using high-throughput 454 pyrosequencing. 100,394
out of 330,010 masked reads produced significant hits in the available databases. 5.165,220 nucleotides (8.27%)
were masked by RepeatMasker, the vast majority of which corresponding to class I (retroelements) and class II
(DNA transposons) mobile elements. BLAST hits included 79,991 matches to entries of the taxonomic suborder
Serpentes, of which 62,433 displayed similarity to documented venom proteins. Strong discrepancies between the
transcriptome-computed and the proteome-gathered toxin compositions were obvious at first sight. Although the
reasons underlaying this discrepancy are elusive, since no clear trend within or between species is apparent, the
data indicate that individual mRNA species may be translationally controlled in a species-dependent manner. The
minimum number of genes from each toxin family transcribed into the venom gland transcriptome of each
species was calculated from multiple alignments of reads matched to a full-length reference sequence of each
toxin family. Reads encoding ORF regions of Kazal-type inhibitor-like proteins were uniquely found in Bothriechis
schlegelii and B. lateralis transcriptomes, suggesting a genus-specific recruitment event during the early-Middle
Miocene. A transcriptome-based cladogram supports the large divergence between A. mexicanus and A. picadoi,
and a closer kinship between A. mexicanus and C. godmani.
Conclusions: Our comparative next-generation sequencing (NGS) analysis reveals taxon-specific trends governing
the formulation of the venom arsenal. Knowledge of the venom proteome provides hints on the translation
efficiency of toxin-coding transcripts, contributing thereby to a more accurate interpretation of the transcriptome.
The application of NGS to the analysis of snake venom transcriptomes, may represent the tool for opening the
door to systems venomics.Universidad de Costa Rica, Instituto Clodomiro PicadoUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP