21 research outputs found

    Comprehensive Analysis Identifies and Validates the Tumor Microenvironment Subtypes to Predict Anti-Tumor Therapy Efficacy in Hepatocellular Carcinoma

    Get PDF
    ObjectiveThe objective of this study was to explore and verify the subtypes in hepatocellular carcinoma based on the immune (lymphocyte and myeloid cells), stem, and stromal cells in the tumor microenvironment and analyze the biological characteristics and potential relevance of each cluster.MethodsWe used the xCell algorithm to calculate cell scores and got subtypes by k-means clustering. In the external validation sets, we verified the conclusion stability by a neural network model. Simultaneously, we speculated the inner connection between clusters by pseudotime trajectory analysis and confirmed it by pathway enrichment, TMB, CNV, etc., analysis.ResultAccording to the results of the consensus cluster, we chose k = 4 as the optimal value and got four different subtypes (C1, C2, C3, and C4) with different biological characteristics based on infiltrating levels of 48 cells in TME. In univariable Cox regression, the hazard ratio (HR) value of C3 versus C1 was 2.881 (95% CI: 1.572–5.279); in multivariable Cox regression, we corrected the age and TNM stage, and the HR value of C3 versus C1 was 2.510 (95% CI: 1.339–4.706). C1 and C2 belonged to the immune-active type, C3 and C4 related to the immune-insensitive type and the potential conversion relationships between clusters. We established a neural network model, and the area under the curves of the neural network model was 0.949 in the testing cohort; the same survival results were also observed in the external validation set. We compared the differences in cell infiltration, immune function, pathway enrichment, TMB, and CNV of four clusters and speculated that C1 and C2 were more likely to benefit from immunotherapy and C3 may benefit from FGF inhibitors.DiscussionOur analysis provides a new approach for the identification of four tumor microenvironment clusters in patients with liver cancer and identifies the biological differences and predicts the immunotherapy efficacy between the four subtypes

    Impact of Climate Change and Land-Use on the Propagation from Meteorological Drought to Hydrological Drought in the Eastern Qilian Mountains

    No full text
    As one of the most destructive and costly natural disasters, drought has far-reaching negative effects on agriculture, water resources, the environment, and human life. Scientific understanding of propagation from meteorological to hydrological drought is of great significance for accurate forecasting of hydrological drought and preventing and mitigating drought disasters. The objective of this study is to analyze the spatio-temporal variational characteristics of propagation from meteorological drought to hydrological drought and the associated driving mechanisms in the eastern Qilian Mountains using the standard precipitation index (SPI), standardized runoff index (SRI), and drought propagation intensity index (DPI). The results show that there has been meteorological humidification and hydrological aridification in the upper reaches of the Shiyang River Basin over the last 56 years; especially in the 2000s, the intensity of hydrological drought was the strongest and the intensity of meteorological drought was the weakest, indicating the propagation intensity of meteorological drought to hydrological drought was extremely strong during this period. The changes of meteorological and hydrological dry–wet are different, both on seasonal and monthly scales. The meteorological dry–wet is shown to have had a significant effect both on the current and month-ahead hydrological dry–wet, where the one-month lag effect was most obvious. The relationship between meteorological and hydrological droughts also vary in space: Hydrological aridification in the Huangyang River, and the rivers east of it, was greater than that in the western tributaries. The drought propagation intensities from west to east showed a decreasing trend, excluding the Huangyang River. Climate and land-use changes are the main factors affecting the propagation from meteorological drought to hydrological drought. When the natural vegetation area accounted for between 76.3–78%, the cultivated land area between 0.55–3.6% and the construction area between 0.08–0.22% were a peer-to-peer propagation process from meteorological drought to hydrological drought in the upper reaches of the Shiyang River

    Variation of the Relative Soil Moisture of Farmland in a Continental River Basin in China

    No full text
    The reduction of grain production caused by drought is one of the most serious problems caused by natural disasters. The relative soil moisture of farmland is the most important monitoring indicator for agricultural drought. This study investigated the relative soil moisture of farmland data from 38 agrometeorological stations in a continental river basin area in China from 1992 to 2012. Spatial and temporal variations of the relative soil moisture of farmland were studied using geostatistical analysis. The results show that, from 1992 to 2012, the average annual relative soil moisture of farmland in the continental river basin ranged from 62.5 to 86.1%, and the relative soil moisture of farmland was high in the marginal areas of basins and low in the central areas of basins and plateau areas. The relative soil moisture of farmland was high in the Tarim Basin and the Hexi Corridor, which are located in the northern Tianshan Mountains and the southern and northern Qilian Mountains, and was low from the northern Altun Mountains to the south of Lop Nor, the Turpan Depression, and the Tarbagatai Mountains. From 1992 to 2012, the annual average relative soil moisture of farmland in the continental river basins showed an increasing trend, with a growth rate of 0.57% yr−1. The variation tendency of the relative soil moisture of farmland was different in different river basins; the relative soil moisture showed a decreasing trend in the Mongolian Plateau and an increasing trend in other basin areas. The relative soil moisture of farmland increased in summer, spring, and winter, and decreased in autumn. The change in relative soil moisture of farmland was due to a combination of climatic factors, such as precipitation and temperature, as well as topography and glacial meltwater

    Chemical composition and antioxidant activity of petroleum ether fraction of Rosmarinus officinalis

    No full text
    The presented study examines the chemical composition and antioxidant activity of the petroleum ether fraction of Rosmarinus officinalis (PEF-RO), which was obtained via 75 % ethanol extraction followed by petroleum ether extraction. The obtained fractions were analyzed by gas chromatography-mass spectrometry (GC-MS). The in vitro antioxidant activity of PEF-RO was investigated using various assays, including 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonate (ABTS) free radical scavenging, and ferric reducing antioxidant power (FRAP) method. A total of 82 chemical components were successfully identified, totaling 10.06 % of PEF-RO content. The identified components consisted of 24 hydrocarbons, 14 ketones, 16 alcohols, 4 phenols, 14 esters, and 10 other compounds. Notably, verbenone (2.4377 %), vitamin A (0.6854 %), trans-geraniol (0.5998 %), linolenic acid (0.5713 %), and 1,8-eucalyptol (0.5323 %) were the most abundant compounds, and there are many trace components in PEF-RO. PEF-RO's IC50 values of DPPH and ABTS free radical scavenging were determined as 0.36 mg/mL and 0.19 mg/mL, respectively. FRAP-method was employed to measure the total antioxidant energy of PEF-RO, which displayed good antioxidant activity. The obtained data provides the foundation for the comprehensive development and utilization of Rosmarinus officinalis

    Farmers’ Willingness to Accept Compensation to Maintain the Benefits of Urban Forests

    No full text
    The Returning Farmland to Forest Program (RFFP) was implemented in China in 1999 with the goal of supporting environmental restoration by returning significant areas of cultivated land to forest. While afforestation supports long-term ecosystem services like carbon sequestration and the reduction of soil and water loss, it also reduces the amount of available arable land, putting financial pressure on those who depend on it for their livelihoods. In an effort to balance both ecological and economic benefits, regional governments offer financial compensation to farmers to offset these pressures in the form of a dollar amount per hectare of reforested land. The current study explores participants’ willingness to accept pay (WTA), along with the difference between the offered per hectare compensation and the amount deemed acceptable by RFFP participants in the region. To this end, 92 households from the representative afforestation area were surveyed in Huining County, Gansu Province, China - an area of strategic ecological importance in the Loess Plateau. The results showed 12.0% of the surveyed respondents to be satisfied with the current compensation policy, while 88.0% of respondents were not. The respondents’ lower and upper WTA limits were 221/ha/yearand221/ha/year and 1331/ha/year, respectively, with an average WTA of 777/ha/year.Thecompensationthatrespondentswouldbemostwillingtoacceptwasdistributedinthe777/ha/year. The compensation that respondents would be most willing to accept was distributed in the 444–888/ha/year and the 889–1331/ha/year ranges, accounting for 37.0% and 31.5% of the total responses, respectively. Gender, age, and education were found to be the main factors influencing a respondents’ WTA. Results of the survey suggest that the actual compensation amount (355/ha/year) is much lower than respondents’ WTA, and that compensation measures and policies should be improved to guarantee a basic income

    Changes of Extreme Temperature and Its Influencing Factors in Shiyang River Basin, Northwest China

    No full text
    The increase in the frequency and intensity of extreme weather events around the world has led to the frequent occurrence of global disasters, which have had serious impacts on the society, economic and ecological environment, especially fragile arid areas. Based on the daily maximum temperature and daily minimum temperature data of four meteorological stations in Shiyang River Basin (SRB) from 1960 to 2015, the spatio-temporal variation characteristics of extreme temperature indices were analyzed by means of univariate linear regression analysis, Mann–Kendall test and correlation analysis. The results showed that the extreme temperatures warming indices and the minimum of daily maximum temperature (TXn) and the minimum of daily minimum temperature (TNn) of cold indices showed an increasing trend from 1960 to 2016, especially since the 1990s, where the growth rate was fast and the response to global warming was sensitive. Except TXn and TNn, other cold indices showed a decreasing trend, especially Diurnal temperature (DTR) range, which decreased rapidly, indicating that the increasing speed of daily min-temperature were greater than of daily max-temperature in SRB. In space, the change tendency rate of the warm index basically showed an obvious altitude gradient effect that decreased with the altitude, which was consistent with Frost day (FD0) and Cool nights (TN10p) in the cold index, while Ice days (ID0) and Cool days (TX10p) are opposite. The mutation of the cold indices occurred earlier than the warm indices, illustrating that the cold indices in SRB were more sensitive to global warming. The change in extreme temperatures that would have a significant impact on the vegetation and glacier permafrost in the basin was the result of the combined function of different atmospheric circulation systems, which included the Arctic polar vortex, Western Pacific subtropical high and Qinghai-tibet Plateau circulation

    Impacts of Climate and Land Cover on Soil Organic Carbon in the Eastern Qilian Mountains, China

    No full text
    Soil, as the largest organic carbon pool of terrestrial ecosystem, plays a significant role in regulating the global carbon cycle, atmospheric carbon dioxide (CO2) levels, and global climate change. It is of great significance to scientifically understand the change rule and influence mechanism of soil organic carbon (SOC) to further understand the "source–sink" transformation of SOC and its influence on climate change. In this paper, the spatiotemporal distribution characteristics and influencing mechanism of SOC were analyzed by means of field investigation and laboratory analysis and the measured data in the Eastern Qilian Mountains. The results showed that the average SOC content of 0–50 cm was 35.74 ± 4.15 g/kg and the range of coefficients of variation (CV) between 48.84% and 75.84%, which suggested that the SOC content exhibited moderate heterogeneity at each soil layer of the Eastern Qilian Mountains. In four land cover types, the SOC content of forestland was the highest, followed by alpine meadow, grassland, and wilderness, which presented surface enrichment, and there was a decreasing trend with the soil depth. From the perspective of seasonal dynamics, there was a uniform pattern of SOC content in different land cover types, shown to be the highest in winter, followed by autumn, spring, and summer, and with the biggest difference between winter and summer appearing in the surface layer. At the same time, our study suggested that the SOC content of different land cover types was closely related to aboveground biomass and negatively related to both the mean monthly temperature and the mean monthly precipitation. Therefore, the distribution and variation of SOC was the result of a combination of climate, vegetation, and other factors

    Spatio-Temporal Changes and Influencing Factors of Meteorological Dry-Wet in Northern China during 1960–2019

    No full text
    In northern China, precipitation fluctuates greatly and drought occurs frequently, which mark some of the important threats to agricultural and animal husbandry production. Understanding the meteorological dry-wet change and the evolution law of drought events in northern China has guiding significance for regional disaster prevention and mitigation. Based on the standardized precipitation index (SPI), this paper explored the spatio-temporal evolution of meteorological dry-wet in northern China. Our results showed that arid area (AA) and semi-arid area (SAA) in the west showed a trend of wetting at inter-annual and seasonal scales, while humid area (HA) and semi-humid area (SHA) in the east showed a different dry-wet changing trend at different seasons under the background of inter-annual drying. AA and HA showed obvious “reverse fluctuation” characteristics in summer. The drought frequency (DF) and drought intensity (DI) were high in the east and low in the west, and there was no significant difference in drought duration (DD) and drought severity (DS) between east and west. The DD, DS and DI of AA and SAA showed a decreasing trend, while the DD and DS of HA and SHA showed a slight increasing trend, and the DS decreased. In summer and autumn, the main influencing factors of drying in the east and wetting in the west were PNA, WP, PDO and TP1, and the fluctuations of NAO-SOI, NAO-AMO and PNA-NINO3.4 jointly determined the characteristics of SPI3 reverse fluctuations of HA and AA in summer
    corecore