11 research outputs found
Optical Rotation and Thermometry of Laser Tweezed Silicon Nanorods
Optical rotation of laser tweezed nanoparticles offers a convenient means for optical to mechanical force transduction and sensing at the nanoscale. Plasmonic nanoparticles are the benchmark system for such studies, but their rapid rotation comes at the price of high photoinduced heating due to Ohmic losses. We show that Mie resonant silicon nanorods with characteristic dimensions of ∼220
7 120 nm2 can be optically trapped and rotated at frequencies up to 2 kHz in water using circularly polarized laser light. The temperature excess due to heating from the trapping laser was estimated by phonon Raman scattering and particle rotation analysis. We find that the silicon nanorods exhibit slightly improved thermal characteristics compared to Au nanorods with similar rotation performance and optical resonance anisotropy. Altogether, the results indicate that silicon nanoparticles have the potential to become the system of choice for a wide range of optomechanical applications at the nanoscale
Nanoplasmonic−nanofluidic single-molecule biosensors for ultrasmall sample volumes
Detection of small amounts of biological compounds is of ever-increasing importance but also remains an experimental challenge. In this context, plasmonic nanoparticles have emerged as strong contenders enabling label-free optical sensing with single-molecule resolution. However, the performance of a plasmonic single-molecule biosensor is not only dependent on its ability to detect a molecule but equally importantly on its efficiency to transport it to the binding site. Here, we present a theoretical study of the impact of downscaling fluidic structures decorated with plasmonic nanoparticles from conventional microfluidics to nanofluidics. We find that for ultrasmall picolitre sample volumes, nanofluidics enables unprecedented binding characteristics inaccessible with conventional microfluidic devices, and that both detection times and number of detected binding events can be improved by several orders of magnitude. Therefore, we propose nanoplasmonic−nanofluidic biosensing platforms as an efficient tool that paves the way for label-free single-molecule detection from ultrasmall volumes, such as single cells
High index dielectric metasurfaces and colloidal solutions: From fabrication to application
High index dielectric nanoparticles and meta-materials have been proposed for many different applications, including light harvesting, sensing and metalenses. However, widespread utilization in practice also requires large-scale fabrication methods able to produce homogeneous structures with engineered optical properties in a cost effective manner. Here, it is presented a facile fabrication method for silicon nanoparticles which is scalable to 4-inch wafers and can produce a wide range of nanoparticle shapes on demand. We also show that the fabricated nanoparticles can be detached from their support using a simple substrate removal technique and then transferred to colloidal suspension. We will finally discuss some uses of the fabricated systems. For the metasurfaces, we will demonstrate complete absorption due to far field interference effects. For the nanoparticles colloids we will show the possibility of realizing an intrinsically chiral structure composed of a low-loss dielectric resonator and we will study optical trapping phenomena for different particle sizes and shapes
Label-free nanofluidic scattering microscopy of size and mass of single diffusing molecules and nanoparticles
Nanofluidic scattering microscopy enables label-free, quantitative measurements of the molecular weight and hydrodynamic radius of biological molecules and nanoparticles freely diffusing inside a nanofluidic channel. Label-free characterization of single biomolecules aims to complement fluorescence microscopy in situations where labeling compromises data interpretation, is technically challenging or even impossible. However, existing methods require the investigated species to bind to a surface to be visible, thereby leaving a large fraction of analytes undetected. Here, we present nanofluidic scattering microscopy (NSM), which overcomes these limitations by enabling label-free, real-time imaging of single biomolecules diffusing inside a nanofluidic channel. NSM facilitates accurate determination of molecular weight from the measured optical contrast and of the hydrodynamic radius from the measured diffusivity, from which information about the conformational state can be inferred. Furthermore, we demonstrate its applicability to the analysis of a complex biofluid, using conditioned cell culture medium containing extracellular vesicles as an example. We foresee the application of NSM to monitor conformational changes, aggregation and interactions of single biomolecules, and to analyze single-cell secretomes
Interaction of Tris with DNA molecules and carboxylic groups on self-assembled monolayers of alkanethiols measured with surface plasmon resonance
Functional materials employing organic coatings on inorganic substrates are perceived as potential platforms for applications in a variety of fields. Therefore, the investigation of interactions of such systems with the microenvironment has become an important research direction in surface science. Herein, we study the interaction of one of the buffers most commonly used in biological studies, Tris buffer, with self-assembled monolayers (SAMs) of alkanethiols and short DNAs using a surface plasmon resonance (SPR) biosensor. We show that the interaction between Tris and carboxylic groups of SAMs is a complex multiphasic process. We demonstrate that Tris base binds to the protonated carboxylic groups. When those groups become deprotonated, Tris base dissociates and Tris acid is attracted, which results in the formation of a diffuse layer over the charged surface. In addition, we show that the interaction of Tris with the immobilized DNA molecules biases the determination of surface concentrations of the immobilized DNA molecules and thus also the determination of hybridization efficiencies
Nanoscale Inorganic Motors Driven by Light: Principles, Realizations, and Opportunities
The prospect of self-propelled artificial machines small enough to navigate within biological matter has fascinated and inspired researchers and the public alike since the dawn of nanotechnology. Despite many obstacles toward the realization of such devices, impressive progress on the development of its basic building block, the nanomotor, has been made over the past decade. Here, we review this emerging area with a focus on inorganic nanomotors driven or activated by light. We outline the distinct challenges and opportunities that differentiate nanomotors from micromotors based on a discussion of how stochastic forces influence the active motion of small particles. We introduce the relevant light-matter interactions and discuss how these can be utilized to classify nanomotors into three broad classes: nanomotors driven by optical momentum transfer, photothermal heating, and photocatalysis, respectively. On the basis of this classification, we then summarize and discuss the diverse body of nanomotor literature. We finally give a brief outlook on future challenges and possibilities in this rapidly evolving research area
Biomolecular charges influence the response of surface plasmon resonance biosensors through electronic and ionic mechanisms
Surface plasmon resonance (SPR) biosensors have become an important label-free optical biomolecular sensing technology and a "gold standard" for retrieving information on the kinetics of biomolecular interactions. Even though biomolecules typically contain an abundance of easily ionizable chemical groups, there is a gap in understanding of whether (and how) the electrostatic charge of a biomolecular system influences the SPR biosensor response. In this work we show that negative static charge present in a biomolecular layer on the surface of an SPR sensor results in significant SPR spectral shifts, and we identify two major mechanisms responsible for such shifts: 1) the formation of an electrical double layer (ionic mechanism), and 2) changes in the electron density at the surface of a metal (electronic mechanism). We show that under low ionic strength conditions, the electronic mechanism is dominant and the SPR wavelength shift is linearly proportional to the surface concentration of biomolecular charges. At high ionic strength conditions, both electric and ionic mechanisms contribute to the SPR wavelength shift. Using the electronic mechanism, we estimated the pKa of surface-bound carboxylic groups and the relative concentration of the carboxyl-terminated alkanethiols in a binary self-assembled monolayer of alkanethiols. The reported sensitivity of SPR to surface charge is especially important in the context of biomolecular sensing. Moreover, it provides an avenue for the application of SPR sensors for fast, label-free determination of the net charge of a biomolecular coating, which is of interest in material science, surface chemistry, electrochemistry, and other fields
Dynamics of an active Nanoparticle in an optical trap
We investigate a nanoparticle inside an optical trap and driven away from equilibrium by self-induced concentration gradients. We find that a nanoparticle performs fast orbital rotations and its probability density shifting away from equilibrium
Antibody−antigen interaction dynamics revealed by analysis of single-molecule equilibrium fluctuations on individual plasmonic nanoparticle biosensors
Antibody−antigen interactions are complex events central to immune response, in vivo and in vitro diagnostics, and development of therapeutic substances. We developed an ultrastable single-molecule localized surface plasmon resonance (LSPR) sensing platform optimized for studying antibody−antigen interaction kinetics over very long time scales. The setup allowed us to perform equilibrium fluctuations analysis of the PEG/anti-PEG interaction. By time and frequency domain analysis, we demonstrate that reversible adsorption of monovalently bound anti-PEG antibodies is the dominant factor affecting the LSPR fluctuations. The results suggest that equilibrium fluctuation analysis can be an alternative to established methods for determination of interaction rates. In particular, the methodology is suited to analyze molecular systems whose properties change during the initial interaction phases, for example, due to mass transport limitations or, as demonstrated here, because the effective association rate constant varies with surface concentration of adsorbed molecules
Surface Interactions of Gold Nanoparticles Optically Trapped against an Interface
Particles that diffuse in close proximity to a surface are expected to behave differently than in free solution because the surface interaction will influence a number of physical properties, including the hydrodynamic, optical, and thermal characteristics of the particle. Understanding the influence of such effects is particularly important in view of the increasing interest in laser tweezing of colloidal resonant nanoparticles for applications such as nanomotors and optical printing and for investigations of unconventional optical forces. Therefore, we used total internal reflection microscopy to probe the interaction between a glass surface and individual ∼100 nm gold nanoparticles trapped by laser tweezers. The results show that particles can be optically confined at controllable distances ranging between ∼30 and ∼90 nm from the surface, depending on the radiation pressure of the trapping laser and the ionic screening of the surrounding liquid. Moreover, the full particle-surface distance probability distribution can be obtained for single nanoparticles by analyzing temporal signal fluctuations. The experimental results are in excellent agreement with Brownian dynamics simulations that take the full force field and photothermal heating into account. At the observed particle-surface distances, translational friction coefficients increase by up to 60% compared to freely diffusing particles, whereas the rotational friction and thermal dissipation are much less affected. The methodology used here is general and can be adapted to a range of single nanoparticle-surface interaction investigations