47 research outputs found

    The Distinct Metabolic Phenotype of Lung Squamous Cell Carcinoma Defines Selective Vulnerability to Glycolytic Inhibition

    Get PDF
    Adenocarcinoma (ADC) and squamous cell carcinoma (SqCC) are the two predominant subtypes of non-small cell lung cancer (NSCLC) and are distinct in their histological, molecular and clinical presentation. However, metabolic signatures specific to individual NSCLC subtypes remain unknown. Here, we perform an integrative analysis of human NSCLC tumour samples, patient-derived xenografts, murine model of NSCLC, NSCLC cell lines and The Cancer Genome Atlas (TCGA) and reveal a markedly elevated expression of the GLUT1 glucose transporter in lung SqCC, which augments glucose uptake and glycolytic flux. We show that a critical reliance on glycolysis renders lung SqCC vulnerable to glycolytic inhibition, while lung ADC exhibits significant glucose independence. Clinically, elevated GLUT1-mediated glycolysis in lung SqCC strongly correlates with high 18F-FDG uptake and poor prognosis. This previously undescribed metabolic heterogeneity of NSCLC subtypes implicates significant potential for the development of diagnostic, prognostic and targeted therapeutic strategies for lung SqCC, a cancer for which existing therapeutic options are clinically insufficient

    High-Resolution Melting Curve Analysis for Rapid Detection of Rifampin and Isoniazid Resistance in Mycobacterium tuberculosis Clinical Isolates ▿

    No full text
    We evaluated high-resolution melting (HRM) curve analysis as a tool for detecting rifampin (RIF) and isoniazid (INH) resistance in Mycobacterium tuberculosis in an accurate, affordable, and rapid manner. Two hundred seventeen M. tuberculosis clinical isolates of known resistance phenotype were used. Twenty-nine known rpoB mutant DNAs, including rare mutations, were also included. Four pairs of primers were designed: rpoB-F/R (for codons 516 to 539 of rpoB), rpoB-516F/R (for codons 508 to 536 of rpoB), katG-F/R (for the codon 315 region of katG), and inhA-F/R (for the nucleotide substitution of C to T at position −15 of inhA). An HRM curve was generated for each isolate after real-time PCR differentiated the mutant from the wild-type strains. DNA sequencing of the target regions was performed to confirm the results of the HRM curve analysis. All but one of the 73 RIF-resistant (RIF-R) strains and all 124 RIF-susceptible (RIF-S) isolates were correctly identified by HRM curve analysis of rpoB. Twenty-seven of 29 known rpoB mutants were detected. In HRM curve analysis of katG and inhA, 90 INH-R strains that harbored katG or inhA mutations, or both, and all INH-S strains were correctly identified. Ten phenotypically INH-R strains not harboring katG or inhA mutations were not detected. The HRM curve analysis will be a useful method for detection of RIF and INH resistance in M. tuberculosis in a rapid, accurate, simple, and cost-effective manner

    Rapid separation of bacteriorhodopsin using a laminar-flow extraction system in a microfluidic device

    No full text
    A protein separation technology using the microfluidic device was developed for the more rapid and effective analysis of target protein. This microfluidic separation system was carried out using the aqueous two-phase system (ATPS) and the ionic liquid two-phase system (ILTPS) for purification method of the protein sample, and the three-flow desalting system was used for the removal of salts from the sucrose-rich sample. Partitioning of the protein sample was observed in ATPS or ILTPS with the various pHs. The microdialysis system was applied to remove small molecules, such as sucrose and salts in the microfluidic channel with the different flow rates of buffer phase. A complex purification method, which combines microdialysis and ATPS or ILTPS, was carried out for the effective purification of bacteriorhodopsin (BR) from the purple membrane of Halobacterium salinarium, which was then analyzed by sodium dodecyl sulfatepolyacrylamide gel electrophoresis and matrix-assisted laser desorption∕ionization time-of-flight. Furthermore, we were able to make a stable three-phase flow controlling the flow rate in the microfluidic channel. Our complex purification methods were successful in purifying and recovering the BR to its required value

    Development and Evaluation of Oligonucleotide Chip Based on the 16S-23S rRNA Gene Spacer Region for Detection of Pathogenic Microorganisms Associated with Sepsis ▿

    Get PDF
    Oligonucleotide chips targeting the bacterial internal transcribed spacer region (ITS) of the 16S-23S rRNA gene, which contains genus- and species-specific regions, were developed and evaluated. Forty-three sequences were designed consisting of 1 universal, 3 Gram stain-specific, 9 genus-specific, and 30 species-specific probes. The specificity of the probes was confirmed using bacterial type strains including 54 of 52 species belonging to 18 genera. The performance of the probes was evaluated using 825 consecutive samples that were positive by blood culture in broth medium. Among the 825 clinical specimens, 708 (85.8%) were identified correctly by the oligonucleotide chip. Most (536 isolates, or 75.7%) were identified as staphylococci, Escherichia coli, or Klebsiella pneumoniae. Thirty-seven isolates (4.5%) did not bind to the corresponding specific probes. Most of these also were staphylococci, E. coli, or K. pneumoniae and accounted for 6.3% of total number of the species. Sixty-two specimens (7.5%) did not bind the genus- or species-specific probes because of lack of corresponding specific probes. Among them, Acinetobacter baumannii was the single most frequent isolate (26/62). The oligonucleotide chip was highly specific and sensitive in detecting the causative agents of bacteremia directly from positive blood cultures
    corecore