53 research outputs found

    Effect of temperature and salinity stress on growth and lipid composition of Shewanella gelidimarina

    Get PDF
    The maximum growth temperature, the optimal growth temperature, and the estimated normal physiological range for growth of Shewanella gelidimarina are functions of water activity (a(w)), which can be manipulated by changing the concentration of sodium chloride. The growth temperatures at the boundaries of the normal physiological range for growth were characterized by increased variability in fatty acid composition. Under hyper- and hypoosmotic stress conditions at an a(w) of 0.993 (1.0% [wt/vol] NaCl) and at an a(w) of 0.977 (4.0% [wt/vol] NaCl) the proportion of certain fatty acids (monounsaturated and branched-chain fatty acids) was highly regulated and was inversely related to the growth rate over the entire temperature range. The physical states of lipids extracted from samples grown at stressful a(w) values at the boundaries of the normal physiological range exhibited no abrupt gel-liquid phase transitions when the lipids were analyzed as liposomes. Lipid packing and adaptational fatty acid composition responses are clearly influenced by differences in the temperature-salinity regime, which are reflected in overall cell function characteristics, such as the growth rate and the normal physiological range for growth.Instituto de Investigaciones Bioquímicas de La Plat

    Effect of temperature and salinity stress on growth and lipid composition of Shewanella gelidimarina

    Get PDF
    The maximum growth temperature, the optimal growth temperature, and the estimated normal physiological range for growth of Shewanella gelidimarina are functions of water activity (a(w)), which can be manipulated by changing the concentration of sodium chloride. The growth temperatures at the boundaries of the normal physiological range for growth were characterized by increased variability in fatty acid composition. Under hyper- and hypoosmotic stress conditions at an a(w) of 0.993 (1.0% [wt/vol] NaCl) and at an a(w) of 0.977 (4.0% [wt/vol] NaCl) the proportion of certain fatty acids (monounsaturated and branched-chain fatty acids) was highly regulated and was inversely related to the growth rate over the entire temperature range. The physical states of lipids extracted from samples grown at stressful a(w) values at the boundaries of the normal physiological range exhibited no abrupt gel-liquid phase transitions when the lipids were analyzed as liposomes. Lipid packing and adaptational fatty acid composition responses are clearly influenced by differences in the temperature-salinity regime, which are reflected in overall cell function characteristics, such as the growth rate and the normal physiological range for growth.Instituto de Investigaciones Bioquímicas de La Plat

    Universality of Thermodynamic Constants Governing Biological Growth Rates

    Get PDF
    Background: Mathematical models exist that quantify the effect of temperature on poikilotherm growth rate. One family of such models assumes a single rate-limiting ‘master reaction ’ using terms describing the temperature-dependent denaturation of the reaction’s enzyme. We consider whether such a model can describe growth in each domain of life. Methodology/Principal Findings: A new model based on this assumption and using a hierarchical Bayesian approach fits simultaneously 95 data sets for temperature-related growth rates of diverse microorganisms from all three domains of life, Bacteria, Archaea and Eukarya. Remarkably, the model produces credible estimates of fundamental thermodynamic parameters describing protein thermal stability predicted over 20 years ago. Conclusions/Significance: The analysis lends support to the concept of universal thermodynamic limits to microbial growth rate dictated by protein thermal stability that in turn govern biological rates. This suggests that the thermal stability of proteins is a unifying property in the evolution and adaptation of life on earth. The fundamental nature of this conclusion has importance for many fields of study including microbiology, protein chemistry, thermal biology, and ecological theory including, for example, the influence of the vast microbial biomass and activity in the biosphere that is poorly described in current climate models
    • …
    corecore