38 research outputs found

    Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes

    Get PDF
    Convective heat transfer can be enhanced by changing flow geometry and/or by enhancing thermal conductivity of the fluid. This study proposes simultaneous passive heat transfer enhancement by combining the geometry effect utilizing nanofluids inflow in coils. The two nanofluid suspensions examined in this study are: water-Al2O3 and water-CuO. The flow behavior and heat transfer performance of these nanofluid suspensions in various configurations of coiled square tubes, e.g., conical spiral, in-plane spiral, and helical spiral, are investigated and compared with those for water flowing in a straight tube. Laminar flow of a Newtonian nanofluid in coils made of square cross section tubes is simulated using computational fluid dynamics (CFD)approach, where the nanofluid properties are treated as functions of particle volumetric concentration and temperature. The results indicate that addition of small amounts of nanoparticles up to 1% improves significantly the heat transfer performance; however, further addition tends to deteriorate heat transfer performance

    Numerical Investigation of Heat Transfer Performance of Various Coiled Square Tubes for Heat Exchanger Application

    Get PDF
    AbstractIn heat exchanger application, working fluid inside the tubes is subjected to considerable temperature changes. In order to improve heat transfer performance, various strategies are proposed and evaluated; one of them is the application of coiled tubes. Coiled tubes have been used widely in heat exchanger application mainly due to the presence of secondary flow which enhances heat transfer considerably. This study addresses heat transfer performance of three configurations of coiled tubes with square cross-section, i.e. in-plane, helical and conical coiled tubes, subjected to large temperature difference. Their heat transfer performance is numerically evaluated and compared with that of a straight tube with identical cross-section and length. A concept of Figure of Merit (FoM) is introduced and utilized to fairly asses the heat transfer performance of the coiled tube configurations. The results indicate that FoM increase as the wall temperature increase. In addition, combination of temperature-induced buoyancy flow and curvature-induced secondary flow considerably affect the flow behavior and heat transfer performance inside the tubes

    Performance and potential energy saving of thermal dryer with intermittent impinging jet

    Get PDF
    In designing an energy efficient impinging jet dryer, it is essential to match the energy demand for drying with the supply of heat by convection to avoid overheating and energy wastage. One way to achieve this is by intermittently supply heat to the drying chamber. By using computational fluid dynamics (CFD) approach, this study numerically investigates the possibility of energy saving by intermittency. First, inlet temperature intermittency is applied. This is conducted by alternately raise it to drying temperature and lowers it to the ambient temperature at certain period. Second, inlet velocity intermittency is applied which is conducted by alternately supplying the hot air to the several drying chamber. One, two, three and four chamber configurations are evaluated. In addition, the intermittency period of 10, 20 and 30 min were examined. The results reveal that the steady impinging jet offers faster drying rate as compared to intermittent impinging jet drying under the same inlet conditions. In addition it was found that drying rate goes down as the number of drying chamber increases. However, the intermittent impinging jet drying offers advantages in term of temperature uniformity and energy conservation. For the same energy usage, the production rate of single drying configuration is only one fourth of the four chamber configuration. This indicates the potential of multi chamber configuration in a real drying application

    Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes

    No full text
    Abstract Convective heat transfer can be enhanced by changing flow geometry and/or by enhancing thermal conductivity of the fluid. This study proposes simultaneous passive heat transfer enhancement by combining the geometry effect utilizing nanofluids inflow in coils. The two nanofluid suspensions examined in this study are: water-Al2O3 and water-CuO. The flow behavior and heat transfer performance of these nanofluid suspensions in various configurations of coiled square tubes, e.g., conical spiral, in-plane spiral, and helical spiral, are investigated and compared with those for water flowing in a straight tube. Laminar flow of a Newtonian nanofluid in coils made of square cross section tubes is simulated using computational fluid dynamics (CFD)approach, where the nanofluid properties are treated as functions of particle volumetric concentration and temperature. The results indicate that addition of small amounts of nanoparticles up to 1% improves significantly the heat transfer performance; however, further addition tends to deteriorate heat transfer performance.</p

    Numerical investigation of phase change materials thermal capacitor for pipe flow

    No full text
    This study addresses the performance of phase change material as thermal capacitor. A computational fluid dynamics (CFD) model is developed to take into account the conjugate heat transfer between water as the heat transfer fluid (HTF) and PCM as thermal capacitor. A pulsating inlet temperature with constant inlet velocity is prescribed to represent temperature variation. The performance of thermal capacitor is evaluated by closely monitoring outlet temperature and comparing it with inlet temperature to examine the reduction in temperature fluctuation. To intensify heat transfer between HTF and PCM, extended surfaces (fins) are installed on PCM side. The results indicate that PCM thermal capacitor can reduce temperature fluctuation by ∼ 1 °C. This reduction can be improved further when extended surface is installed with ∼ 1.5 °C reduction in temperature fluctuation is achieved. Moreover, it is found that the maximum temperature is delayed at the outlet due to slow conjugate heat transfer between HTF and PCM. Inlet velocity is found to have considerable influence of the temperature fluctuation reduction: Slower inlet velocity results in a better temperature fluctuation reduction. This study is expected to serve as a guideline in designing PCM-based thermal capacitor

    Numerical Evaluation of Heat Transfer and Entropy Generation of Helical Tubes with Various Cross-sections under Constant Heat Flux Condition

    No full text
    The presence of curvature-induced secondary flow in helical pipe which create complex transport phenomena and higher transfer rate has attracted significant attention from both academic and industry. Flow behavior and transport processes in helical tube have been intensively investigated. Nevertheless, most studies were focused on the performance based on first law of thermodynamics with limited studies concerning the performance based on second law of thermodynamics. The objective of this study is to investigate the heat transfer performance of helical tube according to both first and second law. The heat transfer rate and entropy generation of helical tubes with various cross-sections, i.e. circular, ellipse and square, subjected to constant wall heat flux conditions are numerically evaluated by utilizing computational fluid dynamics (CFD) approach. Their performances are compared to those of straight tube with identical cross-section. The results indicate that helical tube provides higher heat transfer at the cost of higher pressure. Moreover, it was found that entropy generation in helical tubes is considerably lower as compared to that in straight tube. Among the studied cross-sections, square has the highest heat transfer albeit having the highest pressure drop and entropy generation for both straight and helical tubes

    Numerical Evaluation of Heat Transfer and Entropy Generation of Helical Tubes with Various Cross-sections under Constant Heat Flux Condition

    No full text
    The presence of curvature-induced secondary flow in helical pipe which create complex transport phenomena and higher transfer rate has attracted significant attention from both academic and industry. Flow behavior and transport processes in helical tube have been intensively investigated. Nevertheless, most studies were focused on the performance based on first law of thermodynamics with limited studies concerning the performance based on second law of thermodynamics. The objective of this study is to investigate the heat transfer performance of helical tube according to both first and second law. The heat transfer rate and entropy generation of helical tubes with various cross-sections, i.e. circular, ellipse and square, subjected to constant wall heat flux conditions are numerically evaluated by utilizing computational fluid dynamics (CFD) approach. Their performances are compared to those of straight tube with identical cross-section. The results indicate that helical tube provides higher heat transfer at the cost of higher pressure. Moreover, it was found that entropy generation in helical tubes is considerably lower as compared to that in straight tube. Among the studied cross-sections, square has the highest heat transfer albeit having the highest pressure drop and entropy generation for both straight and helical tubes

    Numerical investigation of phase change materials thermal capacitor for pipe flow

    No full text
    This study addresses the performance of phase change material as thermal capacitor. A computational fluid dynamics (CFD) model is developed to take into account the conjugate heat transfer between water as the heat transfer fluid (HTF) and PCM as thermal capacitor. A pulsating inlet temperature with constant inlet velocity is prescribed to represent temperature variation. The performance of thermal capacitor is evaluated by closely monitoring outlet temperature and comparing it with inlet temperature to examine the reduction in temperature fluctuation. To intensify heat transfer between HTF and PCM, extended surfaces (fins) are installed on PCM side. The results indicate that PCM thermal capacitor can reduce temperature fluctuation by ∼ 1 °C. This reduction can be improved further when extended surface is installed with ∼ 1.5 °C reduction in temperature fluctuation is achieved. Moreover, it is found that the maximum temperature is delayed at the outlet due to slow conjugate heat transfer between HTF and PCM. Inlet velocity is found to have considerable influence of the temperature fluctuation reduction: Slower inlet velocity results in a better temperature fluctuation reduction. This study is expected to serve as a guideline in designing PCM-based thermal capacitor

    Investigation on the effect of blending ratio and airflow rate on syngas profile produced from co-gasification of blended feedstock

    No full text
    Shortages of feedstock supply due to seasonal availability, high transportation costs, and lack of biomass market are creating serious problems in continues operation of bioenergy industry. Aiming at this problem, utilization of blended feedstock is proposed. In this work blends of two different biomasses (wood and coconut shells) were co-gasified using externally heated downdraft gasifier. The effects of varying biomass blending ratio and airflow rate on gaseous components of syngas and its heating value were investigated. The results obtained from the experiments revealed that W20:CS80 blend yielded higher values for H2 (20 Vol.%) and HHV (18 MJ/Nm3) as compared to the other blends. The higher airflow rate has a negative effect on syngas profile and heating value. The CO and CH4 were observed higher at the start of the process, however, CO was observed decreasing afterward, and the CH4 dropped to 5.0 Vol.%. The maximum H2 and CH4 were obtained at 2.5 LPM airflow rate. The process was noticed more stable at low air flow rates. The HHV was observed higher at the start of process at low airflow rate. It is concluded that low airflow rate and a higher ratio of coconut shells can improve the syngas quality during co-gasification
    corecore