11 research outputs found
Carbon and nitrogen dynamics in a soil profile: Model insights and application to a restored Swiss riparian area
The key environmental importance of natural, healthy ecosystems has been progressively recognized and restoration of degraded lands towards their former natural state has become an area of active research worldwide. During restoration, environmental conditions (such as vegetation type and water availability) are manipulated to create ecological conditions suitable for the successful establishment of a target composition of species. Often, ecological restoration induces changes to adjacent ecosystems. This is the case of riparian ecosystems, and their restoration to their original undisturbed situation is likely to cause changes in nutrient cycles. For example, following the restoration of a riparian zone, microbial communities adapted to one set of environmental conditions have to acclimatize to another, and the subsequent changes in the composition of the biomass populations might induce changes in soil organic matter mineralization and soil respiration rates. Since the biogeochemical cycles are tightly interconnected, these changes can trigger nutrient storing or release, therefore inducing changes in nutrient cycles of adjacent ecosystems. Overall, the effects of the restoration activities on the hydrologic regime, soil properties and vegetation are still largely unknown and poorly understood. Within the RECORD project (http://www.cces.ethz.ch/projects/nature/Record), a large collaborative research effort undertaken to monitor and understand the changes in ecosystem functioning in riparian areas undergoing restoration, a numerical model has been developed to simulate the vertical transport of the mobile C and N components in a soil profile (model development discussed in the companion submitted abstract Batlle-Aguilar et al.). In the model, microbial decomposition of the soil organic matter drives biogeochemical transformations of C and N, while the activity of the soil biota is primarily controlled by the soil moisture content. The temporal evolution of the soil properties measured at one location of the RECORD experimental site, in a mixed forest dominated by ash and maple characteristic for the transition from riparian to upland forest, was used to validate the model and to gain insights into the key factors controlling the nutrient turnover. The site is located next to the Thur River where a revitalization project involving removal of levees has been implemented to create more natural conditions in the riparian zone. Soil water content and temperature at several depths were monitored continuously between October 2008 and October 2009. In October 2008, January 2009 and in biweekly frequency between April and October 2009, topsoil and soil solution at several depths were sampled. The soil solution samples were analysed for major carbon and nitrogen species, and the soil samples for denitrification enzyme activity, potential nitrification and related properties. In addition, soil respiration and N2O emissions were measured at each sampling event. Preliminary modelling results are shown, together with a discussion of the most influential parameters and processes controlling C and N turnover in riparian soils
Airplane Landing Performance on Contaminated Runways and Adverse Conditions
In this research, we investigated operational landing and stopping phase of large-transport category airplanes on contaminated runways and under adverse conditions. Introduction of Heaviside step functions in the mathematical model ensures realistic time-delayed modeling of spoiler, brakes, and thrust reverse deployment. The model also accounts or variations in pilot performance and techniques. A simulation model consists of several distinct systems of simultaneous nonlinear ordinary differential equations, semi-empirical expressions, and many accompanied algebraic relationships for aerodynamic coefficients, friction data and relevant parameters. The full non-linear differential model was solved using Heun\u27s predictor-corrector method. Different landing scenarios including dry, icy, and wet runways were simulated to obtain realistic stopping distance, speed, and deceleration histories. The model accounts for different contaminated runways scenarios, hydroplaning, wind effect and other advanced features. This mathematical model and the accompanied in house designed MATLAB® program were used as a reliable operational landing distance calculator and as an educational demonstrator to simulate the operation with limited budget. The simulation analysis showed that FAA, wet-runways correction, is not sufficient calculating safe landing distances. Parametric analysis was performed to estimate contributions or significances of various effects. Due to many uncertainties, especially in aircraft aerodynamic data, we estimated the total uncertainty of the prediction to be approximately 1 % or 100 feet landing distance whichever is higher
Modern comprehensive approach to monitor the morphodynamic evolution of a restored river corridor
River restoration has become a common measure to repair anthropogenically-induced alteration of fluvial ecosystems. The inherent complexity of ecohydrologic systems leads to limitations in understanding the response of such systems to restoration over time. Therefore, a significant effort has been dedicated in the recent years worldwide to document the efficiency of restoration actions and to produce new effective guidelines that may help overcoming existing deficiencies. At the same time little attention was paid to illustrate the reasons and the use of certain monitoring and experimental techniques in spite of others, or in relation to the specific ecohydrologic process being investigated. The purpose of this paper is to enrich efforts in this direction by presenting the framework of experimental activities and the related experimental setup that we designed and installed in order to accomplish some of the research tasks of the multidisciplinary scientific project RECORD (Restored Corridor Dynamics). Therein, we studied the morphodynamic evolution of the restored reach of the River Thur near Niederneunforn (Switzerland), also in relation to the role of pioneer vegetation roots in stabilizing the alluvial sediment. In this work we describe the methodology chosen for monitoring the river morphodynamics, the dynamics of riparian and of in-bed vegetation and their mutual interactions, as well as the need of complementing such observations with experiments and with the hydraulic modeling of the site. We also discuss how the designed installation and the experiments integrate with the needs of other research groups within the project, in particular providing data for a number of investigations thereby including surface water and groundwater interactions, soil moisture and vegetation dynamics
Assessment of SWAT spatial and temporal transferability for a high-altitude glacierized catchment
In this study, we investigated the application and the transferability of the Soil Water and Assessment Tool (SWAT) in a partly glacierized Alpine catchment characterized by extreme climatic conditions and steep terrain. The model was initially calibrated for the 10 km2 watershed of the Damma glacier Critical Zone Observatory (CZO) in central Switzerland using monitoring data for the period of 2009–2011 and then was evaluated for 2012–2013 in the same area. Model performance was found to be satisfactory against both the Nash–Sutcliffe criterion (NS) and a benchmark efficiency (BE). The transferability of the model was assessed by using the parameters calibrated on the small watershed and applying the model to the approximately 100 km2 catchment that drains into the hydropower reservoir of the Göscheneralpsee and includes the Damma glacier CZO. Model results were compared to the reservoir inflow data from 1997 to 2010 and it was found that the model predicted successfully snowmelt timing and autumn recession but could not accurately capture the peak flow for certain years. Runoff was slightly overestimated from late May to June, when it is dominated by snowmelt. Finally, we investigated the response of the greater catchment to climate change using three different climate change scenarios, and the results were compared to those of a previous study, where two different hydrological models, PREVAH and ALPINE3D, were used. The methodology presented here, where SWAT is calibrated for a small watershed and then applied for a bigger area with similar climatic conditions and geographical characteristics, could work even under extreme conditions like ours. However, greater attention should be given to the differences between glacier melt and snowmelt dynamics. In conclusion, this assessment test on the transferability of SWAT on different scales gave valuable information about the strengths and weaknesses of the model when it was applied under conditions different to those under which it was calibrated.ISSN:1027-5606ISSN:1607-793
3,3′-Diindolylmethane Suppresses the Growth of Hepatocellular Carcinoma by Regulating Its Invasion, Migration, and ER Stress-Mediated Mitochondrial Apoptosis
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death worldwide with limited treatment options. Biomarker-based active phenolic flavonoids isolated from medicinal plants might shed some light on potential therapeutics for treating HCC. 3,3′-diindolylmethane (DIM) is a unique biologically active dimer of indole-3-carbinol (I3C), a phytochemical compound derived from Brassica species of cruciferous vegetables—such as broccoli, kale, cabbage, and cauliflower. It has anti-cancer effects on various cancers such as breast cancer, prostate cancer, endometrial cancer, and colon cancer. However, the molecular mechanism of DIM involved in reducing cancer risk and/or enhancing therapy remains unknown. The aim of the present study was to evaluate anti-cancer and therapeutic effects of DIM in human hepatoma cell lines Hep3B and HuhCell proliferation was measured with MTT and trypan blue colony formation assays. Migration, invasion, and apoptosis were measured with Transwell assays and flow cytometry analyses. Reactive oxygen species (ROS) intensity and the loss in mitochondrial membrane potential of Hep3B and Huh7 cells were determined using dihydroethidium (DHE) staining and tetramethylrhodamine ethyl ester dye. Results showed that DIM significantly suppressed HCC cell growth, proliferation, migration, and invasion in a concentration-dependent manner. Furthermore, DIM treatment activated caspase-dependent apoptotic pathway and suppressed epithelial–mesenchymal transition (EMT) via ER stress and unfolded protein response (UPR). Taken together, our results suggest that DIM is a potential anticancer drug for HCC therapy by targeting ER-stress/UPR
Patterns of earthworm communities and species traits in relation to the perturbation gradient of a restored floodplain
Little is known about the diversity and ecology of earthworms in flocdplains, as well as their response to natural and anthropic perturbations (e.g. floods, river channelisation, floodplain restoration). We characterised the patterns of earthworm communities and species traits in the different habitats of a lowland restored floodplain in Switzerland. In addition to classical species-based metrics, such as species richness and Shannon diversity, species traits were used to calculate the community weighted means (CWMs) of traits and functional dispersion (FDis). We hypothesised that trait-based metrics would reveal clearer patterns than classical approaches. The distribution of earthworm traits varied among habitats in relation to changes in flooding frequency: poorly developed gravel bar soils most exposed to flooding were characterised by high abundance of small epigeic species and low abundance of large anecic species. Differences in anecic and endogeic earthworm community structure matched flood frequency. In agreement with our hypothesis, CWMs were more strongly correlated to environmental variables than species composition, diversity, or functional diversity. Based on these results, the ratio of the relative abundances of epigeic and anecic species, and the differences in species composition within anecic and endogeic ecological types of earthworms were identified as indicators of soil development in floodplains. (C) 2012 Published by Elsevier B.V.ECO