3,020 research outputs found

    Improving the security of multiparty quantum secret sharing against Trojan horse attack

    Full text link
    We analyzed the security of the multiparty quantum secret sharing (MQSS) protocol recently proposed by Zhang, Li and Man [Phys. Rev. A \textbf{71}, 044301 (2005)] and found that this protocol is secure for any other eavesdropper except for the agent Bob who prepares the quantum signals as he can attack the quantum communication with a Trojan horse. That is, Bob replaces the single-photon signal with a multi-photon one and the other agent Charlie cannot find this cheating as she does not measure the photons before they runs back from the boss Alice, which reveals that this MQSS protocol is not secure for Bob. Finally, we present a possible improvement of the MQSS protocol security with two single-photon measurements and six unitary operations.Comment: 4 pages, 2 figures; The revised version of the paper published in Phys. Rev. A 72, 044302 (2005). A bug is modified and an addendum is adde

    Information Filtering on Coupled Social Networks

    Full text link
    In this paper, based on the coupled social networks (CSN), we propose a hybrid algorithm to nonlinearly integrate both social and behavior information of online users. Filtering algorithm based on the coupled social networks, which considers the effects of both social influence and personalized preference. Experimental results on two real datasets, \emph{Epinions} and \emph{Friendfeed}, show that hybrid pattern can not only provide more accurate recommendations, but also can enlarge the recommendation coverage while adopting global metric. Further empirical analyses demonstrate that the mutual reinforcement and rich-club phenomenon can also be found in coupled social networks where the identical individuals occupy the core position of the online system. This work may shed some light on the in-depth understanding structure and function of coupled social networks

    Multipartite entanglement purification with quantum nondemolition detectors

    Full text link
    We present a scheme for multipartite entanglement purification of quantum systems in a Greenberger-Horne-Zeilinger state with quantum nondemolition detectors (QNDs). This scheme does not require the controlled-not gates which cannot be implemented perfectly with linear optical elements at present, but QNDs based on cross-Kerr nonlinearities. It works with two steps, i.e., the bit-flipping error correction and the phase-flipping error correction. These two steps can be iterated perfectly with parity checks and simple single-photon measurements. This scheme does not require the parties to possess sophisticated single photon detectors. These features maybe make this scheme more efficient and feasible than others in practical applications.Comment: 8 pages, 5 figure

    Sequential Wnt Agonist then Antagonist Treatment Accelerates Tissue Repair and Minimizes Fibrosis

    Get PDF
    Tissue fibrosis compromises organ function and occurs as a potential long-term outcome in response to acute tissue injuries. Currently, lack of mechanistic understanding prevents effective prevention and treatment of the progression from acute injury to fibrosis. Here, we combined quantitative experimental studies with a mouse kidney injury model and a computational approach to determine how the physiological consequences are determined by the severity of ischemia injury, and to identify how to manipulate Wnt signaling to accelerate repair of ischemic tissue damage while minimizing fibrosis. The study reveals that Wnt-mediated memory of prior injury contributes to fibrosis progression, and ischemic preconditioning reduces the risk of death but increases the risk of fibrosis. Furthermore, we validated the prediction that sequential combination therapy of initial treatment with a Wnt agonist followed by treatment with a Wnt antagonist can reduce both the risk of death and fibrosis in response to acute injuries

    Exploring the potentiality of standard sirens to probe cosmic opacity at high redshifts

    Full text link
    In this work, using the Gaussian process, we explore the potentiality of future gravitational wave (GW) measurements to probe cosmic opacity at high redshifts through comparing its opacity-free luminosity distance (LD) with the opacity-dependent one from the combination of Type Ia supernovae (SNIa) and gamma-ray bursts (GRBs). The GW data, SNIa and GRB data are simulated from the measurements of the future Einstein Telescope, the actual Pantheon compilation and the latest observation of GRBs compiled by L. Amati {\it et al}, respectively. A nonparametric method is proposed to probe the spatial homogeneity of cosmic transparency at high redshift by comparing the LD reconstructed from the GW data with that reconstructed from the Pantheon and GRB data. In addition, the cosmic opacity is tested by using the parametrization for the optical depth, and the results show that the constraints on cosmic opacity are more stringent than the previous ones. It shows that the future GW measurements may be used as an important tool to probe the cosmic opacity in the high redshift region.Comment: 21pages, 3 figures accepted by EPJC. arXiv admin note: text overlap with arXiv:1912.0232

    Ask Question First for Enhancing Lifelong Language Learning

    Full text link
    Lifelong language learning aims to stream learning NLP tasks while retaining knowledge of previous tasks. Previous works based on the language model and following data-free constraint approaches have explored formatting all data as "begin token (\textit{B}) + context (\textit{C}) + question (\textit{Q}) + answer (\textit{A})" for different tasks. However, they still suffer from catastrophic forgetting and are exacerbated when the previous task's pseudo data is insufficient for the following reasons: (1) The model has difficulty generating task-corresponding pseudo data, and (2) \textit{A} is prone to error when \textit{A} and \textit{C} are separated by \textit{Q} because the information of the \textit{C} is diminished before generating \textit{A}. Therefore, we propose the Ask Question First and Replay Question (AQF-RQ), including a novel data format "\textit{BQCA}" and a new training task to train pseudo questions of previous tasks. Experimental results demonstrate that AQF-RQ makes it easier for the model to generate more pseudo data that match corresponding tasks, and is more robust to both sufficient and insufficient pseudo-data when the task boundary is both clear and unclear. AQF-RQ can achieve only 0.36\% lower performance than multi-task learning.Comment: This paper has been accepted for publication at COLING 202

    4,6-Dinitro­benzene-1,3-diamine

    Get PDF
    The mol­ecule of the title compound, C6H6N4O4, is almost planar, being stabilized by two intra­molecular N—H⋯O hydrogen bonds. Further N—H⋯O links lead to a sheet in the crystal structure
    • …
    corecore