185 research outputs found

    Backhaul-Aware Caching Placement for Wireless Networks

    Full text link
    As the capacity demand of mobile applications keeps increasing, the backhaul network is becoming a bottleneck to support high quality of experience (QoE) in next-generation wireless networks. Content caching at base stations (BSs) is a promising approach to alleviate the backhaul burden and reduce user-perceived latency. In this paper, we consider a wireless caching network where all the BSs are connected to a central controller via backhaul links. In such a network, users can obtain the required data from candidate BSs if the data are pre-cached. Otherwise, the user data need to be first retrieved from the central controller to local BSs, which introduces extra delay over the backhaul. In order to reduce the download delay, the caching placement strategy needs to be optimized. We formulate such a design problem as the minimization of the average download delay over user requests, subject to the caching capacity constraint of each BS. Different from existing works, our model takes BS cooperation in the radio access into consideration and is fully aware of the propagation delay on the backhaul links. The design problem is a mixed integer programming problem and is highly complicated, and thus we relax the problem and propose a low-complexity algorithm. Simulation results will show that the proposed algorithm can effectively determine the near-optimal caching placement and provide significant performance gains over conventional caching placement strategies.Comment: 6 pages, 3 figures, accepted to IEEE Globecom, San Diego, CA, Dec. 201

    Balancing Exploration and Exploitation: Disentangled β\beta-CVAE in De Novo Drug Design

    Full text link
    Deep generative models have recently emerged as a promising de novo drug design method. In this respect, deep generative conditional variational autoencoder (CVAE) models are a powerful approach for generating novel molecules with desired drug-like properties. However, molecular graph-based models with disentanglement and multivariate explicit latent conditioning have not been fully elucidated. To address this, we proposed a molecular-graph β\beta-CVAE model for de novo drug design. Here, we empirically tuned the value of disentanglement and assessed its ability to generate molecules with optimised univariate- or-multivariate properties. In particular, we optimised the octanol-water partition coefficient (ClogP), molar refractivity (CMR), quantitative estimate of drug-likeness (QED), and synthetic accessibility score (SAS). Results suggest that a lower β\beta value increases the uniqueness of generated molecules (exploration). Univariate optimisation results showed our model generated molecular property averages of ClogP = 41.07% ±\pm 0.01% and CMR 66.76% ±\pm 0.01% by the Ghose filter. Multivariate property optimisation results showed that our model generated an average of 30.07% ±\pm 0.01% molecules for both desired properties. Furthermore, our model improved the QED and SAS (exploitation) of molecules generated. Together, these results suggest that the β\beta-CVAE could balance exploration and exploitation through disentanglement and is a promising model for de novo drug design, thus providing a basis for future studies

    Cloud Based Data Protection in Anonymously Controlled SDN

    Get PDF
    Nowadays, Software Defined Network (SDN) develops rapidly for its novel structure which separates the control plane and the data plane of network devices. Many researchers devoted themselves to the study of such a special network. However, some limitations restrict the development of SDN. On the one hand, the single controller in the conventional model bears all threats, and the corruption of it will result in network paralysis. On the other hand, the data will be increasing more in SDN switches in the data plane, while the storage space of these switches is limited. In order to solve the mentioned issues, we propose two corresponding protocols in this paper. Specifically, one is an anonymous protocol in the control plane, and the other is a verifiable outsourcing protocol in the data plane. The evaluation indicates that our protocol is correct, secure, and efficient

    The Implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for Global Dust Forecasting at NOAA NCEP

    Get PDF
    The NOAA National Centers for Environmental Prediction (NCEP) implemented the NOAA Environmental Modeling System (NEMS) Global Forecast System (GFS) Aerosol Component (NGAC) for global dust forecasting in collaboration with NASA Goddard Space Flight Center (GSFC). NGAC Version 1.0 has been providing 5-day dust forecasts at 1deg x 1deg resolution on a global scale, once per day at 00:00 Coordinated Universal Time (UTC), since September 2012. This is the first global system capable of interactive atmosphere aerosol forecasting at NCEP. The implementation of NGAC V1.0 reflects an effective and efficient transitioning of NASA research advances to NCEP operations, paving the way for NCEP to provide global aerosol products serving a wide range of stakeholders, as well as to allow the effects of aerosols on weather forecasts and climate prediction to be considered

    Combined Phytochemistry and Chemotaxis Assays for Identification and Mechanistic Analysis of Anti-Inflammatory Phytochemicals in Fallopia japonica

    Get PDF
    Plants provide a rich source of lead compounds for a variety of diseases. A novel approach combining phytochemistry and chemotaxis assays was developed and used to identify and study the mechanisms of action of the active compounds in F. japonica, a medicinal herb traditionally used to treat inflammation. Based on a bioactivity-guided purification strategy, two anthranoids, emodin and physcion, were identified from F. japonica. Spectroscopic techniques were used to characterize its crude extract, fractions and phytochemicals. The crude extract, chloroform fraction, and anthranoids of F. japonica significantly inhibited CXCR4-mediated chemotaxis. Mechanistic studies showed that emodin and physcion inhibited chemotaxis via inactivating the MEK/ERK pathway. Moreover, the crude extract and emodin could prevent or treat type 1 diabetes in non-obese diabetic (NOD) mice. This study illustrates the applicability of a combinational approach for the study of anti-inflammatory medicine and shows the potential of F. japonica and its anthranoids for anti-inflammatory therapy

    The 5p15.33 Locus Is Associated with Risk of Lung Adenocarcinoma in Never-Smoking Females in Asia

    Get PDF
    Genome-wide association studies of lung cancer reported in populations of European background have identified three regions on chromosomes 5p15.33, 6p21.33, and 15q25 that have achieved genome-wide significance with p-values of 10−7 or lower. These studies have been performed primarily in cigarette smokers, raising the possibility that the observed associations could be related to tobacco use, lung carcinogenesis, or both. Since most women in Asia do not smoke, we conducted a genome-wide association study of lung adenocarcinoma in never-smoking females (584 cases, 585 controls) among Han Chinese in Taiwan and found that the most significant association was for rs2736100 on chromosome 5p15.33 (p = 1.30×10−11). This finding was independently replicated in seven studies from East Asia totaling 1,164 lung adenocarcinomas and 1,736 controls (p = 5.38×10−11). A pooled analysis achieved genome-wide significance for rs2736100. This SNP marker localizes to the CLPTM1L-TERT locus on chromosome 5p15.33 (p = 2.60×10−20, allelic risk = 1.54, 95% Confidence Interval (CI) 1.41–1.68). Risks for heterozygote and homozygote carriers of the minor allele were 1.62 (95% CI; 1.40–1.87), and 2.35 (95% CI: 1.95–2.83), respectively. In summary, our results show that genetic variation in the CLPTM1L-TERT locus of chromosome 5p15.33 is directly associated with the risk of lung cancer, most notably adenocarcinoma

    Вихретоковый анизотропный термоэлектрический первичный преобразователь лучистого потока

    Get PDF
    Представлена оригинальная конструкция первичного преобразователя лучистого потока, который может служить основой для создания приемника неселективного излучения с повышенной чувствительностью
    corecore