2,255 research outputs found

    Periodic Radio Variability in NRAO 530: Phase Dispersion Minimization Analysis

    Full text link
    In this paper, a periodicity analysis of the radio light curves of the blazar NRAO 530 at 14.5, 8.0, and 4.8 GHz is presented employing an improved Phase Dispersion Minimization (PDM) technique. The result, which shows two persistent periodic components of 6 \sim 6 and 10 \sim 10 years at all three frequencies, is consistent with the results obtained with the Lomb-Scargle periodogram and weighted wavelet Z-transform algorithms. The reliability of the derived periodicities is confirmed by the Monte Carlo numerical simulations which show a high statistical confidence. (Quasi-)Periodic fluctuations of the radio luminosity of NRAO 530 might be associated with the oscillations of the accretion disk triggered by hydrodynamic instabilities of the accreted flow. \keywords{methods: statistical -- galaxies: active -- galaxies: quasar: individual: NRAO 530}Comment: 8 pages, 5 figures, accepted by RA

    MIMO Channel Information Feedback Using Deep Recurrent Network

    Get PDF
    In a multiple-input multiple-output (MIMO) system, the availability of channel state information (CSI) at the transmitter is essential for performance improvement. Recent convolutional neural network (NN) based techniques show competitive ability in realizing CSI compression and feedback. By introducing a new NN architecture, we enhance the accuracy of quantized CSI feedback in MIMO communications. The proposed NN architecture invokes a module named long short-term memory (LSTM) which admits the NN to benefit from exploiting temporal and frequency correlations of wireless channels. Compromising performance with complexity, we further modify the NN architecture with a significantly reduced number of parameters to be trained. Finally, experiments show that the proposed NN architectures achieve better performance in terms of both CSI compression and recovery accuracy

    MIMO Channel Information Feedback Using Deep Recurrent Network

    Get PDF
    In a multiple-input multiple-output (MIMO) system, the availability of channel state information (CSI) at the transmitter is essential for performance improvement. Recent convolutional neural network (NN) based techniques show competitive ability in realizing CSI compression and feedback. By introducing a new NN architecture, we enhance the accuracy of quantized CSI feedback in MIMO communications. The proposed NN architecture invokes a module named long short-term memory (LSTM) which admits the NN to benefit from exploiting temporal and frequency correlations of wireless channels. Compromising performance with complexity, we further modify the NN architecture with a significantly reduced number of parameters to be trained. Finally, experiments show that the proposed NN architectures achieve better performance in terms of both CSI compression and recovery accuracy

    Periodic Epidemic Spreading over Complex Systems: Modeling and Analysis

    Get PDF

    Methyl 2-[2-(6-chloro­pyrimidin-4-yl­oxy)phen­yl]-3,3-dimethoxy­propanoate

    Get PDF
    In the title compound, C16H17ClN2O5, the dihedral angle between the aromatic rings is 77.36 (4)°. An intra­molecular C—H⋯O inter­action results in the formation of a planar [r.m.s. deviation = 0.103 (2) Å] five-membered ring, which is oriented at a dihedral angle of 4.84 (4)° with respect to the adjacent benzene ring. In the crystal structure, weak intermolecular C—H⋯π inter­actions are found

    Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microbial lipids have drawn increasing attention in recent years as promising raw materials for biodiesel production, and the use of lignocellulosic hydrolysates as carbon sources seems to be a feasible strategy for cost-effective lipid fermentation with oleaginous microorganisms on a large scale. During the hydrolysis of lignocellulosic materials with dilute acid, however, various kinds of inhibitors, especially large amounts of organic acids, will be produced, which substantially decrease the fermentability of lignocellulosic hydrolysates. To overcome the inhibitory effects of organic acids, it is critical to understand their impact on the growth and lipid accumulation of oleaginous microorganisms.</p> <p>Results</p> <p>In our present work, we investigated for the first time the effect of ten representative organic acids in lignocellulosic hydrolysates on the growth and lipid accumulation of oleaginous yeast <it>Trichosporon fermentans </it>cells. In contrast to previous reports, we found that the toxicity of the organic acids to the cells was not directly related to their hydrophobicity. It is worth noting that most organic acids tested were less toxic than aldehydes to the cells, and some could even stimulate the growth and lipid accumulation at a low concentration. Unlike aldehydes, most binary combinations of organic acids exerted no synergistic inhibitory effects on lipid production. The presence of organic acids decelerated the consumption of glucose, whereas it influenced the utilization of xylose in a different and complicated way. In addition, all the organic acids tested, except furoic acid, inhibited the malic activity of <it>T. fermentans</it>. Furthermore, the inhibition of organic acids on cell growth was dependent more on inoculum size, temperature and initial pH than on lipid content.</p> <p>Conclusions</p> <p>This work provides some meaningful information about the effect of organic acid in lignocellulosic hydrolysates on the lipid production of oleaginous yeast, which is helpful for optimization of biomass hydrolysis processes, detoxified pretreatment of hydrolysates and lipid production using lignocellulosic materials.</p

    A green and efficient synthesis of quinoxaline derivatives catalyzed by 1-n-butyl-3-methylimmidazolium tetrafluoroborate

    Get PDF
    The room temperature ionic liquid 1-n-butyl-3-methylimmidazolium tetrafluoroborate ([bmim]BF4) was used to promote the synthesis of quinoxaline derivatives under grinding condition. The yields were ranged in 86.0-95.1%. It was shown that the proposed method is fast, efficient and environmentally benign.KEY WORDS: Ionic liquid, Quinoxaline derivatives, Synthesis Bull. Chem. Soc. Ethiop. 2011, 25(3), 455-460
    corecore