7,142 research outputs found

    Microwave millisecond spike emission and its associated phenomena during the impulsive phase of large flares

    Get PDF
    A tentative model is proposed to account for some features of the microwave millisecond spike emission and its links with the physical processes of associated phenomena during the impulsive phase of large flares by comparing the optical, radio, and X-ray observations on May 16, 1981 to those on October 12, 1981

    Electron-cyclotron maser and solar microwave millisecond spike emission

    Get PDF
    An intense solar microwave millisecond spike emission (SMMSE) event was observed on May 16, 1981 by Zhao and Jin at Beijing Observatory. The peak flux density of the spikes is high to 5 x 100,000 s.f.u. and the corresponding brightness temperature (BT) reaches approx. 10 to the 15th K. In order to explain the observed properties of SMMSE, it is proposed that a beam of electrons with energy of tens KeV injected from the acceleration region downwards into an emerging magnetic arch forms so-called hollow beam distribution and causes electron-cyclotron maser (ECM) instability. The growth rate of second harmonic X-mode is calculated and its change with time is deduced. It is shown that the saturation time of ECM is t sub s approx. equals 0.42 ms and only at last short stage (delta t less than 0.2 t sub s) the growth rate decreases to zero rather rapidly. So a SMMSE with very high BT will be produced if the ratio of number density of nonthermal electrons to that of background electrons, n sub s/n sub e, is larger than 4 x .00001

    Role of quark-interchange processes in evolution of mesonic matter

    Full text link
    We divide the cross section for a meson-meson reaction into three parts. The first part is for the quark-interchange process, the second for quark-antiquark annihilation processes and the third for resonant processes. Master rate equations are established to yield time dependence of fugacities of pions, rhos, kaons and vetor kaons. The equations include cross sections for inelastic scattering of pions, rhos, kaons and vector kaons. Cross sections for quark-interchange-induced reactions, that were obtained in a potential model, are parametrized for convenient use. The number densities of pion and rho (kaon and vector kaon) are altered by quark-interchange processes in equal magnitudes but opposite signs. The master rate equations combined with the hydrodynamic equations for longitudinal and transverse expansion are solved with many sets of initial meson fugacities. Quark-interchange processes are shown to be important in the contribution of the inelastic meson-meson scattering to evolution of mesonic matter.Comment: 28 pages, 1 figure, 8 table
    corecore