34 research outputs found

    Long‑term effect of sitagliptin on endothelial function in type 2 diabetes : a sub‑analysis of the PROLOGUE study

    Get PDF
    Background: As a sub-analysis of the PROLOGUE study, we evaluated the long-term effect of sitagliptin, a dipeptidyl peptidase 4 inhibitor, on endothelial function in the conduit brachial artery in patients with type 2 diabetes. Methods: In the PROLOGUE study, patients were randomly assigned to either add-on sitagliptin treatment (sitagliptin group) or continued conventional antihyperglycemic treatment (conventional group). Among the 463 participants in the PROLOGUE study, FMD was measured in 17 patients in the sitagliptin group and 18 patients in the conventional group at the beginning and after 12 and 24 months of treatment. Results: HbA1c levels were significantly decreased after 12 and 24 months of treatment compared to baseline values in both groups (7.0 ± 0.4 vs. 6.6 ± 0.3 and 6.6 ± 0.4 % in the sitagliptin group; 7.0 ± 0.6 vs. 6.6 ± 0.7 and 6.6 ± 0.7 % in the conventional group; P < 0.05, respectively). There was no significant difference between FMD values at baseline and after 12 and 24 months in the sitagliptin group (4.3 ± 2.6 vs. 4.4 ± 2.1 and 4.4 ± 2.3 %, P = 1.0, respectively). Although FMD had a tendency to increase from 4.3 ± 2.4 % at baseline to 5.2 ± 1.9 % after 12 months and 5.1 ± 2.2 % after 24 months in the conventional group, there was no significant difference between FMD values at baseline and after 12 and 24 months (P = 0.36 and 0.33, respectively). Conclusions: Add-on sitagliptin to conventional antihyperglycemic drugs in patients with type 2 diabetes did not alter endothelial function in the conduit brachial artery measured by FMD during a 2-year study period. Sitagliptin may be used without concern for an adverse effect on endothelial function in patients with type 2 diabetes

    Versatile live-cell activity analysis platform for characterization of neuronal dynamics at single-cell and network level

    No full text
    Chronic imaging of neuronal networks in vitro has provided fundamental insights into mechanisms underlying neuronal function. Current labeling and optical imaging methods, however, cannot be used for continuous and long-term recordings of the dynamics and evolution of neuronal networks, as fluorescent indicators can cause phototoxicity. Here, we introduce a versatile platform for label-free, comprehensive and detailed electrophysiological live-cell imaging of various neurogenic cells and tissues over extended time scales. We report on a dual-mode high-density microelectrode array, which can simultaneously record in (i) full-frame mode with 19,584 recording sites and (ii) high-signal-to-noise mode with 246 channels. We set out to demonstrate the capabilities of this platform with recordings from primary and iPSC-derived neuronal cultures and tissue preparations over several weeks, providing detailed morpho-electrical phenotypic parameters at subcellular, cellular and network level. Moreover, we develop reliable analysis tools, which drastically increase the throughput to infer axonal morphology and conduction speed.ISSN:2041-172

    Versatile live-cell activity analysis platform for characterization of neuronal dynamics at single-cell and network level

    No full text
    Chronic imaging of neuronal networks in vitro has provided fundamental insights into mechanisms underlying neuronal function. Current labeling and optical imaging methods, however, cannot be used for continuous and long-term recordings of the dynamics and evolution of neuronal networks, as fluorescent indicators can cause phototoxicity. Here, we introduce a versatile platform for label-free, comprehensive and detailed electrophysiological live-cell imaging of various neurogenic cells and tissues over extended time scales. We report on a dual-mode high-density microelectrode array, which can simultaneously record in (i) full-frame mode with 19,584 recording sites and (ii) high-signal-to-noise mode with 246 channels. We set out to demonstrate the capabilities of this platform with recordings from primary and iPSC-derived neuronal cultures and tissue preparations over several weeks, providing detailed morpho-electrical phenotypic parameters at subcellular, cellular and network level. Moreover, we develop reliable analysis tools, which drastically increase the throughput to infer axonal morphology and conduction speed.ISSN:2041-172

    Chd2 interacts with H3.3 to determine myogenic cell fate

    No full text
    Cell differentiation is mediated by lineage-determining transcription factors. We show that chromodomain helicase DNA-binding domain 2 (Chd2), a SNF2 chromatin remodelling enzyme family member, interacts with MyoD and myogenic gene regulatory sequences to specifically mark these loci via deposition of the histone variant H3.3 prior to cell differentiation. Directed and genome-wide analysis of endogenous H3.3 incorporation demonstrates that knockdown of Chd2 prevents H3.3 deposition at differentiation-dependent, but not housekeeping, genes and inhibits myogenic gene activation. The data indicate that MyoD determines cell fate and facilitates differentiation-dependent gene expression through Chd2-dependent deposition of H3.3 at myogenic loci prior to differentiation

    A Spirochaete is suggested as the causative agent of Akoya oyster disease by metagenomic analysis

    Get PDF
    <div><p>Mass mortality that is acompanied by reddish browning of the soft tissues has been occurring in cultured pearl oyster, <i>Pinctada fucata martensii</i>. The disease is called Akoya oyster disease (AOD). Although spreading pattern of the disease and transmission experiments suggest that the disease is infectious, the causative agent has not yet been identified. We used shotgun and 16S rRNA-based metagenomic analysis to identify genes that are present specifically in affected oysters. The genes found only in diseased oysters were mostly bacterial origin, suggesting that the causative agent was a bacterial pathogen. This hypothesis was supported by the inhibition of AOD development in naïve oysters injected with the hemolymph of diseased animals followed immediately with penicillin bath-administration. Further analyses of the hemolymph and mantle specifically and universally detected genes of bacteria that belong to phylum Spirochaetes in diseased pearl oysters but not in healthy oysters. By <i>in situ</i> hybridization or immunostaining, a <i>Brachyspira</i>-like bacterium was observed in the smears of hemolymph from affected oysters, but not from healthy oysters. Phylogenetic analysis using 16S rRNA sequences showed that the presumptive causative bacterium was outside of but most closely related to family Brachyspiraceae. We propose ‘Candidatus <i>Maribrachyspira akoyae</i>’ gen. nov, sp nov., for this bacterium.</p></div
    corecore