96 research outputs found

    An Alanine to Proline Mutation in the 1A Rod Domain of the Keratin 10 Chain in Epidermolytic Hyperkeratosis

    Get PDF
    We report a mutation in a case of epidermolytic hyperkeratosis that results in a proline for alanine substitution in the residue position 12 of the 1A subdomain of the keratin 10 chain (codon 158). The disease phenotype is consistent with the inappropriate substitution of a proline near the beginning of the rod domain, because it is likely to seriously disrupt the structural organization of coiled-coil molecules within keratin intermediate filaments. Mutations/substitutions in this position have not been reported in any keratin disease. Position 12 is an alanine in all intermediate filament chains, and lies in the outer b heptad position of the coiled-coil. In vitro peptide interference assembly assays revealed that substitutions that alter residue size or charge at this position primarily interfere with keratin filament elongation

    Expression Profiling of Calcium Induced Genes in Cultured Human Keratinocytes

    Get PDF
    Terminal differentiation of skin keratinocytes is a vertically directed multi-step process that is tightly controlled by the sequential expression of a variety of genes. To examine the gene expression profile in calcium-induced keratinocyte differentiation, we constructed a normalized cDNA library using mRNA isolated from these calcium-treated keratinocytes. After sequencing about 10,000 clones, we were able to obtain 4,104 independent genes. They consisted of 3,699 annotated genes and 405 expressed sequence tags (ESTs). Some were the genes involved in constituting epidermal structures and others were unknown genes that are probably associated with keratinocytes. In particular, we were able to identify genes located at the chromosome 1q21, the locus for the epidermal differentiation complex, and 19q13.1, another probable locus for epidermal differentiation-related gene clusters. One EST located at the chromosome 19q13.1 showed increased expression by calcium treatment, suggesting a novel candidate gene relevant to keratinocyte differentiation. These results demonstrate the complexity of the transcriptional profile of keratinocytes, providing important clues on which to base further investigations of the molecular events underlying keratinocyte differentiation

    Results from Over One Year of Follow-Up for Absorbable Mesh Insertion in Partial Mastectomy

    Get PDF
    ∙ The authors have no financial conflicts of interest. © Copyright: Yonsei University College of Medicine 2011 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licens

    Clinical effectiveness of the sequential 4-channel NMES compared with that of the conventional 2-channel NMES for the treatment of dysphagia in a prospective double-blind randomized controlled study

    Get PDF
    Background To date, conventional swallowing therapies and 2-channel neuromuscular electrical stimulation (NMES) are standard treatments for dysphagia. The precise mechanism of 2-channel NMES treatment has not been determined, and there are controversies regarding the efficacy of this therapy. The sequential 4-channel NMES was recently developed and its action is based on the normal contractile sequence of swallowing-related muscles. Objective To evaluate and compare the rehabilitative effectiveness of the sequential 4-channel NMES with that of conventional 2-channel NMES. Methods In this prospective randomized case–control study, 26 subjects with dysphagia were enrolled. All participants received 2- or 4-channel NMES for 2–3weeks (minimal session: 7 times, treatment duration: 300–800min). Twelve subjects in the 4-channel NMES group and eleven subjects in the 2-channel NMES group completed the intervention. Initial and follow-up evaluations were performed using the videofluoroscopic dysphagia scale (VDS), the penetration-aspiration scale (PAS), the MD Anderson dysphagia inventory (MDADI), the functional oral intake scale (FOIS), and the Likert scale. Results The sequential 4-channel NMES group experienced significant improvement in their VDS (oral, pharyngeal, and total), PAS, FOIS, and MDADI (emotional, functional, and physical subsets) scores, based on their pretreatment data. VDS (oral, pharyngeal, and total) and MDADI (emotional and physical subsets) scores, but not PAS and FOIS scores, significantly improved in the 2-channel NMES group posttreatment. When the two groups were directly compared, the 4-channel NMES group showed significant improvement in oral and total VDS scores. Conclusions The sequential 4-channel NMES, through its activation of the suprahyoid and thyrohyoid muscles, and other infrahyoid muscles mimicking physiological activation, may be a new effective treatment for dysphagia. Trial registration: clinicaltrial.gov, registration number: NCT03670498, registered 13 September 2018, https://clinicaltrials.gov/ct2/show/NCT03670498?term=NCT03670498&draw=2&rank=1 .This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant Number: HI18C1169). This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Min‑ istry of Science, ICT and Future Planning (NRF- NRF-2016R1D1A1B03935130)

    Federated learning for thyroid ultrasound image analysis to protect personal information: Validation study in a real health care environment

    Get PDF
    Background: Federated learning is a decentralized approach to machine learning; it is a training strategy that overcomes medical data privacy regulations and generalizes deep learning algorithms. Federated learning mitigates many systemic privacy risks by sharing only the model and parameters for training, without the need to export existing medical data sets. In this study, we performed ultrasound image analysis using federated learning to predict whether thyroid nodules were benign or malignant. Objective: The goal of this study was to evaluate whether the performance of federated learning was comparable with that of conventional deep learning. Methods: A total of 8457 (5375 malignant, 3082 benign) ultrasound images were collected from 6 institutions and used for federated learning and conventional deep learning. Five deep learning networks (VGG19, ResNet50, ResNext50, SE-ResNet50, and SE-ResNext50) were used. Using stratified random sampling, we selected 20% (1075 malignant, 616 benign) of the total images for internal validation. For external validation, we used 100 ultrasound images (50 malignant, 50 benign) from another institution Results: For internal validation, the area under the receiver operating characteristic (AUROC) curve for federated learning was between 78.88% and 87.56%, and the AUROC for conventional deep learning was between 82.61% and 91.57%. For external validation, the AUROC for federated learning was between 75.20% and 86.72%, and the AUROC curve for conventional deep learning was between 73.04% and 91.04%. Conclusions: We demonstrated that the performance of federated learning using decentralized data was comparable to that of conventional deep learning using pooled data. Federated learning might be potentially useful for analyzing medical images while protecting patients personal information. © 2021 JMIR Medical Informatics. All rights reserved.1

    Orally Active Multi-Functional Antioxidants Delay Cataract Formation in Streptozotocin (Type 1) Diabetic and Gamma-Irradiated Rats

    Get PDF
    Age-related cataract is a worldwide health care problem whose progression has been linked to oxidative stress and the accumulation of redox-active metals. Since there is no specific animal model for human age-related cataract, multiple animal models must be used to evaluate potential therapies that may delay and/or prevent cataract formation.Proof of concept studies were conducted to evaluate 4-(5-hydroxypyrimidin-2-yl)-N,N-dimethyl-3,5-dioxopiperazine-1-sulfonamide (compound 4) and 4-(5-hydroxy-4,6-dimethoxypyrimidin-2-yl)-N,N-dimethyl-3,5-dioxopiperazine-1-sulfonamide (compound 8), multi-functional antioxidants that can independently chelate redox metals and quench free radicals, on their ability to delay the progression of diabetic "sugar" cataracts and gamma radiation-induced cataracts. Prior to 15 Gy of whole head irradiation, select groups of Long Evans rats received either diet containing compound 4 or 8, or a single i.p. injection of panthethine, a radioprotective agent. Compared to untreated, irradiated rats, treatment with pantethine, 4 and 8 delayed initial lens changes by 4, 47, and 38 days, respectively, and the average formation of posterior subcapsular opacities by 23, 53 and 58 days, respectively. In the second study, select groups of diabetic Sprague Dawley rats were administered chow containing compounds 4, 8 or the aldose reductase inhibitor AL1576. As anticipated, treatment with AL1576 prevented cataract by inhibiting sorbitol formation in the lens. However, compared to untreated rats, compounds 4 and 8 delayed vacuole formation by 20 days and 12 days, respectively, and cortical cataract formation by 8 and 3 days, respectively, without reducing lenticular sorbitol. Using in vitro lens culture in 30 mM xylose to model diabetic "sugar" cataract formation, western blots confirmed that multi-functional antioxidants reduced endoplasmic reticulum stress.Multi-functional antioxidants delayed cataract formation in two diverse rat models. These studies provide a proof of concept that a general cataract treatment focused on reducing oxidative stress instead of a specific mechanism of cataractogenesis can be developed

    Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications

    Get PDF
    corecore