8 research outputs found

    Dopamine-dependent scaling of subthalamic gamma bursts with movement velocity in patients with Parkinson’s disease

    Get PDF
    Gamma synchronization increases during movement and scales with kinematic parameters. Here, disease-specific characteristics of this synchronization and the dopamine-dependence of its scaling in Parkinson’s disease are investigated. In 16 patients undergoing deep brain stimulation surgery, movements of different velocities revealed that subthalamic gamma power peaked in the sensorimotor part of the subthalamic nucleus, correlated positively with maximal velocity and negatively with symptom severity. These effects relied on movement-related bursts of transient synchrony in the gamma band. The gamma burst rate highly correlated with averaged power, increased gradually with larger movements and correlated with symptom severity. In the dopamine-depleted state, gamma power and burst rate significantly decreased, particularly when peak velocity was slower than ON medication. Burst amplitude and duration were unaffected by the medication state. We propose that insufficient recruitment of fast gamma bursts during movement may underlie bradykinesia as one of the cardinal symptoms in Parkinson’s disease

    The neurological and neuropsychiatric spectrum of adults with late-treated phenylketonuria

    Get PDF
    Introduction: Phenylketonuria (PKU) is a rare, treatable inborn error of metabolism with frequent neurological and neuropsychiatric complications, especially in undiagnosed or insufficiently treated individuals. Given the wide range of clinical presentations and the importance of treatment implications, we here delineate the neurological and neuropsychiatric symptom spectrum in a large cohort of previously unreported adults with late-treated PKU. Methods: We consecutively evaluated late-treated PKU cases and pooled clinical and paraclinical data, including video-material, from three centers with expertise in complex movement disorders, inborn errors of metabolism and pediatrics. Results: 26 individuals were included (10 females, median age 52 years). Developmental delay and intellectual disability were omnipresent with severe impairment of expressive communication noted in 50% of cases. Movement disorders were prevalent (77%), including tremor (38%, mostly postural), stereotypies (38%), and tics (19%). One case had neurodegenerative levodopa-responsive parkinsonism. Mild ataxia was noted in 54% of cases and 31% had a history of seizures. Neuropsychiatric characteristics included obsessive-compulsive (35%) and self-injurious behaviors (31%), anxiety (27%), depression (19%) and features compatible with those observed in individuals with autism spectrum disorder (19%). Neuroimaging revealed mild white matter changes. Adherence to dietary treatment was inconsistent in the majority of cases, particularly throughout adolescence. Conclusion: A history of movement disorders, particularly tremor, stereotypies and tics, in the presence of developmental delay, intellectual disability and neuropsychiatric features, such as obsessive-compulsive and self-injurious behaviors in adults should prompt the diagnostic consideration of PKU. Initiation and adherence to (dietary) treatment can ameliorate the severity of these symptoms

    Pulse Duration Settings in Subthalamic Stimulation for Parkinson's Disease

    No full text
    Background: Stimulation parameters in deep brain stimulation (DBS) of the subthalamic nucleus for Parkinson's disease (PD) are rarely tested in double-blind conditions. Evidence-based recommendations on optimal stimulator settings are needed. Results from the CUSTOM-DBS study are reported, comparing 2 pulse durations. Methods: A total of 15 patients were programmed using a pulse width of 30 mu s (test) or 60 mu s (control). Efficacy and side-effect thresholds and unified PD rating scale (UPDRS) III were measured in meds-off (primary outcome). The therapeutic window was the difference between patients' efficacy and side effect thresholds. Results: The therapeutic window was significantly larger at 30 mu s than 60 mu s (P=.0009) and the efficacy (UPDRS III score) was noninferior (P=.00008). Interpretation: Subthalamic neurostimulation at 30 mu s versus 60 mu s pulse width is equally effective on PD motor signs, is more energy efficient, and has less likelihood of stimulation-related side effects. (c) 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society

    Quality of Life after Deep Brain Stimulation of Pediatric Patients With Dyskinetic Cerebral Palsy: A Prospective, Single-Arm, Multicenter Study With a Subsequent Randomized Double-Blind Crossover (STIM-CP)

    No full text
    Background Patients with dyskinetic cerebral palsy are often severely impaired with limited treatment options. The effects of deep brain stimulation (DBS) are less pronounced than those in inherited dystonia but can be associated with favorable quality of life outcomes even in patients without changes in dystonia severity. Objective The aim is to assess DBS effects in pediatric patients with pharmacorefractory dyskinetic cerebral palsy with focus on quality of life. Methods The method used is a prospective, single-arm, multicenter study. The primary endpoint is improvement in quality of life (CPCHILD [Caregiver Priorities & Child Health Index of Life with Disabilities]) from baseline to 12 months under therapeutic stimulation. The main key secondary outcomes are changes in Burke-Fahn-Marsden Dystonia Rating Scale, Dyskinesia Impairment Scale, Gross Motor Function Measure-66, Canadian Occupational Performance Measure (COPM), and Short-Form (SF)-36. After 12 months, patients were randomly assigned to a blinded crossover to receive active or sham stimulation for 24 hours each. Severity of dystonia and chorea were blindly rated. Safety was assessed throughout. The trial was registered at ClinicalTrials.gov, number NCT02097693. Results Sixteen patients (age: 13.4 +/- 2.9 years) were recruited by seven clinical sites. Primary outcome at 12-month follow-up is as follows: mean CPCHILD increased by 4.2 +/- 10.4 points (95% CI [confidence interval] -1.3 to 9.7; P = 0.125); among secondary outcomes: improvement in COPM performance measure of 1.1 +/- 1.5 points (95% CI 0.2 to 1.9; P = 0.02) and in the SF-36 physical health component by 5.1 +/- 6.2 points (95% CI 0.7 to 9.6; P = 0.028). Otherwise, there are no significant changes. Conclusion Evidence to recommend DBS as routine treatment to improve quality of life in pediatric patients with dyskinetic cerebral palsy is not yet sufficient. Extended follow-up in larger cohorts will determine the impact of DBS further to guide treatment decisions in these often severely disabled patients

    Error signals in the subthalamic nucleus are related to post-error slowing in patients with Parkinson's disease

    No full text
    Error monitoring is essential for optimizing motor behavior. It has been linked to the medial frontal cortex, in particular to the anterior midcingulate cortex (aMCC). The aMCC subserves its performance-monitoring function in interaction with the basal ganglia (BG) circuits, as has been demonstrated in patients suffering from BG lesions or from Parkinson's disease (PD). The subthalamic nucleus (STN) has been assumed an integrative structure for emotional, cognitive and motor processing. Error-related behavioral adaptation such as post-error slowing has been linked to motor inhibition involving activation of an inhibitory network including the STN. However, direct involvement of the STN in error monitoring and post-error behavioral adjustment has not yet been demonstrated. Here, we used simultaneous scalp electroencephalogram (EEG) and local field potential (LFP) recordings from the BG in 17 patients undergoing deep brain stimulation (DBS) for PD to investigate error-related evoked activity in the human STN, its relation to post-error behavioral adjustment and the influence of dopamine during the performance of a speeded flanker task

    A Phase II Study to Evaluate the Safety and Efficacy of Prasinezumab in Early Parkinson's Disease (PASADENA) : Rationale, Design, and Baseline Data

    Get PDF
    Altres ajuts: F. Hoffmann-La Roche Ltd.Background: Currently available treatments for Parkinson's disease (PD) do not slow clinical progression nor target alpha-synuclein, a key protein associated with the disease. Objective: The study objective was to evaluate the efficacy and safety of prasinezumab, a humanized monoclonal antibody that binds aggregated alpha-synuclein, in individuals with early PD. Methods: The PASADENA study is a multicenter, randomized, double-blind, placebo-controlled treatment study. Individuals with early PD, recruited across the US and Europe, received monthly intravenous doses of prasinezumab (1,500 or 4,500 mg) or placebo for a 52-week period (Part 1), followed by a 52-week extension (Part 2) in which all participants received active treatment. Key inclusion criteria were: aged 40-80 years; Hoehn & Yahr (H&Y) Stage I or II; time from diagnosis ≤2 years; having bradykinesia plus one other cardinal sign of PD (e.g., resting tremor, rigidity); DAT-SPECT imaging consistent with PD; and either treatment naïve or on a stable monoamine oxidase B (MAO-B) inhibitor dose. Study design assumptions for sample size and study duration were built using a patient cohort from the Parkinson's Progression Marker Initiative (PPMI). In this report, baseline characteristics are compared between the treatment-naïve and MAO-B inhibitor-treated PASADENA cohorts and between the PASADENA and PPMI populations. Results: Of the 443 patients screened, 316 were enrolled into the PASADENA study between June 2017 and November 2018, with an average age of 59.9 years and 67.4% being male. Mean time from diagnosis at baseline was 10.11 months, with 75.3% in H&Y Stage II. Baseline motor and non-motor symptoms (assessed using Movement Disorder Society-Unified Parkinson's Disease Rating Scale [MDS-UPDRS]) were similar in severity between the MAO-B inhibitor-treated and treatment-naïve PASADENA cohorts (MDS-UPDRS sum of Parts I + II + III [standard deviation (SD)]; 30.21 [11.96], 32.10 [13.20], respectively). The overall PASADENA population (63.6% treatment naïve and 36.4% on MAO-B inhibitor) showed a similar severity in MDS-UPDRS scores (e.g., MDS-UPDRS sum of Parts I + II + III [SD]; 31.41 [12.78], 32.63 [13.04], respectively) to the PPMI cohort (all treatment naïve). Conclusions: The PASADENA study population is suitable to investigate the potential of prasinezumab to slow disease progression in individuals with early PD. Trial Registration: NCT03100149
    corecore