1,986 research outputs found

    Seasonal Variability of the CO2 System in a Large Coastal Plain Estuary

    Get PDF
    The Chesapeake Bay, a large coastal plain estuary, has been studied extensively in terms of its water quality, and yet, comparatively less is known about its carbonate system. Here we present discrete observations of dissolved inorganic carbon (DIC) and total alkalinity from four seasonal cruises in 2016–2017. These new observations are used to characterize the regional CO2 system and to construct a DIC budget of the mainstem. In all seasons, elevated DIC concentrations were observed at the mouth of the bay associated with inflowing Atlantic Ocean waters, while minimum concentrations of DIC were associated with fresher waters at the head of the bay. Significant spatial variability of the partial pressure of CO2 was observed throughout the mainstem, with net uptake of atmospheric CO2 during each season in the upper mainstem and weak seasonal outgassing of CO2 near the outflow to the Atlantic Ocean. During the time frame of this study, the Chesapeake Bay mainstem was (1) net autotrophic in the mixed layer (net community production of 0.31‐mol C m−2·year−1) and net heterotrophic throughout the water column (net community production of −0.48‐mol C m−2·year−1), (2) a sink of 0.38‐mol C m−2·year−1 for atmospheric CO2, and (3) significantly seasonally and spatially variable with respect to biologically driven changes in DIC. DATA available at: https://doi.org/10.25773/rntn‐ez1

    Structural mass spectrometry decodes domain interaction and dynamics of the full-length Human Histone Deacetylase 2

    Get PDF
    Human Histone Deacetylase 2 (HDAC2) belongs to a conserved enzyme superfamily that regulates deacetylation inside cells. HDAC2 is a drug target as it is known to be upregulated in cancers and neurodegenerative disorders. It consists of a globular deacetylase and C-terminus intrinsically-disordered domains [1-3]. To date, there is no full-length structure of HDAC2 available due to the high intrinsic flexibility of its C-terminal domain. The intrinsically-disordered domain, however, is known to be important for the enzymatic function of HDAC2 [1, 4]. Here we combine several structural Mass Spectrometry (MS) methodologies such as denaturing, native, ion mobility and chemical crosslinking, alongside biochemical assays and molecular modelling to study the structure and dynamics of the full-length HDAC2 for the first time. We show that MS can easily dissect heterogeneity inherent within the protein sample and at the same time probe the structural arrangement of the different conformers present. Activity assays combined with data from MS and molecular modelling suggest how the structural dynamics of the C-terminal domain, and its interactions with the catalytic domain, regulate the activity of this enzyme

    Stimulated Secondary Emission of Single Photon Avalanche Diodes

    Full text link
    Large-area next-generation physics experiments rely on using Silicon Photo-Multiplier (SiPM) devices to detect single photons, which trigger charge avalanches. The noise mechanism of external cross-talk occurs when secondary photons produced during a charge avalanche escape from an SiPM and trigger other devices within a detector system. This work presents measured spectra of the secondary photons emitted from the Hamamatsu VUV4 and Fondazione Bruno Kessler VUV-HD3 SiPMs stimulated by laser light, near operational voltages. The work describes the Microscope for the Injection and Emission of Light (MIEL) setup, which is an experimental apparatus constructed for this purpose. Measurements have been performed at a range of over-voltage values and temperatures from 86~K to 293~K. The number of photons produced per avalanche at the source are calculated from the measured spectra and determined to be 40±\pm9 and 61±\pm11 photons produced per avalanche for the VUV4 and VUV-HD3 respectively at 4 volts over-voltage. No significant temperature dependence is observed within the measurement uncertainties. The overall number of photons emitted per avalanche from each SiPM device are also reported.Comment: 15 pages, 7 figure

    Towards IASI-New Generation (IASI-NG): impact of improved spectral resolution and radiometric noise on the retrieval of thermodynamic, chemistry and climate variables

    Get PDF
    Besides their strong contribution to weather forecast improvement through data assimilation, thermal infrared sounders onboard polar-orbiting platforms are now playing a key role for monitoring atmospheric composition changes. The Infrared Atmospheric Sounding Interferometer (IASI) instrument developed by the French space agency (CNES) and launched by Eumetsat onboard the Metop satellite series is providing essential inputs for weather forecasting and pollution/climate monitoring owing to its smart combination of large horizontal swath, good spectral resolution and high radiometric performance. EUMETSAT is currently preparing the next polar-orbiting program (EPS-SG) with the Metop-SG satellite series that should be launched around 2020. In this framework, CNES is studying the concept of a new instrument, the IASI-New Generation (IASI-NG), characterized by an improvement of both spectral and radiometric characteristics as compared to IASI, with three objectives: (i) continuity of the IASI/Metop series; (ii) improvement of vertical resolution; (iii) improvement of the accuracy and detection threshold for atmospheric and surface components. In this paper, we show that an improvement of spectral resolution and radiometric noise fulfill these objectives by leading to (i) a better vertical coverage in the lower part of the troposphere, thanks to the increase in spectral resolution; (ii) an increase in the accuracy of the retrieval of several thermodynamic, climate and chemistry variables, thanks to the improved signal-to-noise ratio as well as less interferences between the signatures of the absorbing species in the measured radiances. The detection limit of several atmospheric species is also improved. We conclude that IASI-NG has the potential for strongly benefiting the numerical weather prediction, chemistry and climate communities now connected through the European GMES/Copernicus initiative

    A first genotyping assay of French cattle breeds based on a new allele of the extension gene encoding the melanocortin-1 receptor (Mc1r)

    Get PDF
    The seven transmembrane domain melanocortin-1 receptor (Mc1r) encoded by the coat color extension gene (E) plays a key role in the signaling pathway of melanin synthesis. Upon the binding of agonist (melanocortin hormone, α-MSH) or antagonist (Agouti protein) ligands, the melanosomal synthesis of eumelanin and/or phaeomelanin pigments is stimulated or inhibited, respectively. Different alleles of the extension gene were cloned from unrelated animals belonging to French cattle breeds and sequenced. The wild type E allele was mainly present in Normande cattle, the dominant ED allele in animals with black color (i.e. Holstein), whereas the recessive e allele was identified in homozygous animals exhibiting a more or less strong red coat color (Blonde d'Aquitaine, Charolaise, Limousine and Salers). A new allele, named E1, was found in either homozygous (E1/E1) or heterozygous (E1/E) individuals in Aubrac and Gasconne breeds. This allele displayed a 4 amino acid duplication (12 nucleotides) located within the third cytoplasmic loop of the receptor, a region known to interact with G proteins. A first genotyping assay of the main French cattle breeds is described based on these four extension alleles

    Environmentally weathered polystyrene particles induce phenotypical and functional maturation of human monocyte-derived dendritic cells

    Get PDF
    Micro- and nanoplastics (MNP) are ubiquitously present in the environment due to their high persistence and bioaccumulative properties. Humans get exposed to MNP via various routes and consequently, they will encounter dendritic cells (DC) which are antigen-presenting cells involved in regulating immune responses. The consequences of DC exposure to MNP are an important, yet understudied, cause of concern. Therefore, this study aimed to assess the uptake and effect of MNP in vitro by exposing human monocyte-derived dendritic cells (MoDC) to virgin and environmentally weathered polystyrene (PS) particles of different sizes (0.2, 1, and 10 ”m), at different concentrations ranging from 1 to 100 ”g/ml. The effects of these particles were examined by measuring co-stimulatory surface marker (i.e. CD83 and CD86) expression. In addition, T-cell proliferation was measured via a mixed-leukocyte reaction (MLR) assay. The results showed that MoDC were capable of absorbing PS particles, and this was facilitated by pre-incubation in heat-inactivated (HI) plasma. Furthermore, depending on their size, weathered PS particles in particular caused increased expression of CD83 and CD86 on MoDC. Lastly, weathered 0.2 ”m PS particles were able to functionally activate MoDC, leading to an increase in T-cell activation. These in vitro data suggest that, depending on their size, weathered PS particles might act as an immunostimulating adjuvant, possibly leading to T-cell sensitization

    Institutionalizing Provider-Initiated HIV Testing and Counselling for Children: An Observational Case Study from Zambia

    Get PDF
    Background: Provider-initiated testing and counselling (PITC) is a priority strategy for increasing access for HIV-exposed children to prevention measures, and infected children to treatment and care interventions. This article examines efforts to scale-up paediatric PITC at a second-level hospital located in Zambia’s Southern Province, and serving a catchment area of 1.2 million people. Methods and Principal Findings: Our retrospective case study examined best practices and enabling factors for rapid institutionalization of PITC in Livingstone General Hospital. Methods included clinical observations, key informant interviews with programme management, and a desk review of hospital management information systems (HMIS) uptake data following the introduction of PITC. After PITC roll-out, the hospital experienced considerably higher testing uptake. In a 36-month period following PITC institutionalization, of total inpatient children eligible for PITC (n = 5074), 98.5 % of children were counselled, and 98.2 % were tested. Of children tested (n = 4983), 15.5 % were determined HIVinfected; 77.6 % of these results were determined by DNA polymerase chain reaction (PCR) testing in children under the age of 18 months. Of children identified as HIV-infected in the hospital’s inpatient and outpatient departments (n = 1342), 99.3 % were enrolled in HIV care, including initiation on co-trimoxazole prophylaxis. A number of good operational practices and enabling factors in the Livingstone General Hospital experience can inform rapid PIT

    Longitudinal evaluation of quality of life in 288 patients with Neurofibromatosis 2

    Get PDF
    Advances in molecular biology have resulted in novel therapy for neurofibromatosis 2-related (NF2) tumours, highlighting the need for robust outcome measures. The disease-focused NF2 impact on quality of life (NFTI-QOL) patient questionnaire was assessed as an outcome measure for treatment in a multi-centre study. NFTI-QOL was related to clinician-rated severity (ClinSev) and genetic severity (GenSev) over repeated visits. Data were evaluated for 288 NF2 patients (n = 464 visits) attending the English national NF2 clinics from 2010 to 2012. The male-to-female ratio was equal and the mean age was 42.2 (SD 17.8) years. The analysis included NFTI-QOL eight-item score, ClinSev graded as mild, moderate, or severe, and GenSev as a rank order of the number of NF2 mutations (graded as mild, moderate, severe). The mean (SD) 8.7 (5.4) score for NFTI-QOL for either a first visit or all visits 9.2 (5.4) was similar to the published norm of 9.4 (5.5), with no significant relationships with age or gender. NFTI-QOL internal reliability was good, with a Cronbach’s alpha score of 0.85 and test re-test reliability r = 0.84. NFTI related to ClinSev (r = 0.41, p < 0.001; r = 0.46 for all visits), but weakly to GenSev (r = 0.16, p < 0.05; r = 0.15 for all visits). ClinSev related to GenSev (r = 0.41, p < 0.001; r = 0.42 for all visits). NFTI-QOL showed a good reliability and ability to detect significant longitudinal changes in the QOL of individuals. The moderate relationships of NFTI-QOL with clinician- and genetic-rated severity suggest that NFTI-QOL taps into NF2 patient experiences that are not encompassed by ClinSev rating or genotype
    • 

    corecore