3,276 research outputs found

    Deformation rings and parabolic induction

    Get PDF
    We study deformations of smooth mod pp representations (and their duals) of a pp-adic reductive group GG. Under some mild genericity condition, we prove that parabolic induction with respect to a parabolic subgroup P=LNP=LN defines an isomorphism between the universal deformation rings of a supersingular representation σˉ\bar{\sigma} of LL and of its parabolic induction πˉ\bar{\pi}. As a consequence, we show that every Banach lift of πˉ\bar{\pi} is induced from a unique Banach lift of σˉ\bar{\sigma}.Comment: 28 pages, minor changes, final versio

    A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method

    Full text link
    In this note, we present a new averaging technique for the projected stochastic subgradient method. By using a weighted average with a weight of t+1 for each iterate w_t at iteration t, we obtain the convergence rate of O(1/t) with both an easy proof and an easy implementation. The new scheme is compared empirically to existing techniques, with similar performance behavior.Comment: 8 pages, 6 figures. Changes with previous version: Added reference to concurrently submitted work arXiv:1212.1824v1; clarifications added; typos corrected; title changed to 'subgradient method' as 'subgradient descent' is misnome

    Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

    Full text link
    We propose a randomized block-coordinate variant of the classic Frank-Wolfe algorithm for convex optimization with block-separable constraints. Despite its lower iteration cost, we show that it achieves a similar convergence rate in duality gap as the full Frank-Wolfe algorithm. We also show that, when applied to the dual structural support vector machine (SVM) objective, this yields an online algorithm that has the same low iteration complexity as primal stochastic subgradient methods. However, unlike stochastic subgradient methods, the block-coordinate Frank-Wolfe algorithm allows us to compute the optimal step-size and yields a computable duality gap guarantee. Our experiments indicate that this simple algorithm outperforms competing structural SVM solvers.Comment: Appears in Proceedings of the 30th International Conference on Machine Learning (ICML 2013). 9 pages main text + 22 pages appendix. Changes from v3 to v4: 1) Re-organized appendix; improved & clarified duality gap proofs; re-drew all plots; 2) Changed convention for Cf definition; 3) Added weighted averaging experiments + convergence results; 4) Clarified main text and relationship with appendi

    Emergent Fermions and Anyons in the Kitaev Model

    Full text link
    We study the gapped phase of the Kitaev model on the honeycomb lattice using perturbative continuous unitary transformations. The effective low-energy Hamiltonian is found to be an extended toric code with interacting anyons. High-energy excitations are emerging free fermions which are composed of hardcore bosons with an attached string of spin operators. The excitation spectrum is mapped onto that of a single particle hopping on a square lattice in a magnetic field. We also illustrate how to compute correlation functions in this framework. The present approach yields analytical perturbative results in the thermodynamical limit without using the Majorana or the Jordan-Wigner fermionization initially proposed to solve this problem.Comment: 4 pages, 5 figures, published versio

    Perturbative study of the Kitaev model with spontaneous time-reversal symmetry breaking

    Full text link
    We analyze the Kitaev model on the triangle-honeycomb lattice whose ground state has recently been shown to be a chiral spin liquid. We consider two perturbative expansions: the isolated-dimer limit containing Abelian anyons and the isolated-triangle limit. In the former case, we derive the low-energy effective theory and discuss the role played by multi-plaquette interactions. In this phase, we also compute the spin-spin correlation functions for any vortex configuration. In the isolated-triangle limit, we show that the effective theory is, at lowest nontrivial order, the Kitaev honeycomb model at the isotropic point. We also compute the next-order correction which opens a gap and yields non-Abelian anyons.Comment: 7 pages, 4 figures, published versio

    Solids and supersolids of three-body interacting polar molecules in an optical lattice

    Full text link
    We study the physics of cold polar molecules loaded into an optical lattice in the regime of strong three-body interactions, as put forward recently by B\"uchler [Nature Phys. 3, 726 (2007)]. To this end quantum Monte Carlo simulations, exact diagonalization and a semiclassical approach are used to explore hardcore bosons on the two-dimensional square lattice which interact solely by long ranged three-body terms. The resulting phase diagram shows a sequence of solid and supersolid phases. Our findings are directly relevant for future experimental implementations and open a new route towards the discovery of a lattice supersolid phase in experiment.Comment: 4+ pages, 4 figures, published versio

    Bound states in two-dimensional spin systems near the Ising limit: A quantum finite-lattice study

    Full text link
    We analyze the properties of low-energy bound states in the transverse-field Ising model and in the XXZ model on the square lattice. To this end, we develop an optimized implementation of perturbative continuous unitary transformations. The Ising model is studied in the small-field limit which is found to be a special case of the toric code model in a magnetic field. To analyze the XXZ model, we perform a perturbative expansion about the Ising limit in order to discuss the fate of the elementary magnon excitations when approaching the Heisenberg point.Comment: 21 pages, 18 figures, published versio

    Magnetization plateaux in an extended Shastry-Sutherland model

    Full text link
    We study an extended two-dimensional Shastry-Sutherland model in a magnetic field where besides the usual Heisenberg exchanges of the Shastry-Sutherland model two additional SU(2) invariant couplings are included. Perturbative continous unitary transformations are used to determine the leading order effects of the additional couplings on the pure hopping and on the long-range interactions between the triplons which are the most relevant terms for small magnetization. We then compare the energy of various magnetization plateaux in the classical limit and we discuss the implications for the two-dimensional quantum magnet SrCu2_2(BO3_3)2_2.Comment: 8 pages, Proceedings of the HFM2008 Conferenc
    • …
    corecore