71 research outputs found
Predilection for developing a hematogenous orthopaedic implant-associated infection in older versus younger mice
BACKGROUND: The pathogenesis of hematogenous orthopaedic implant-associated infections (HOIAI) remains largely unknown, with little understanding of the influence of the physis on bacterial seeding. Since the growth velocity in the physis of long bones decreases during aging, we sought to evaluate the role of the physis on influencing the development of Staphylococcus aureus HOIAI in a mouse model comparing younger versus older mice.
METHODS: In a mouse model of HOIAI, a sterile Kirschner wire was inserted retrograde into the distal femur of younger (5-8-week-old) and older (14-21-week-old) mice. After a 3-week convalescent period, a bioluminescent Staphylococcus aureus strain was inoculated intravenously. Bacterial dissemination to operative and non-operative legs was monitored longitudinally in vivo for 4 weeks, followed by ex vivo bacterial enumeration and X-ray analysis.
RESULTS: In vivo bioluminescence imaging and ex vivo CFU enumeration of the bone/joint tissue demonstrated that older mice had a strong predilection for developing a hematogenous infection in the operative legs but not the non-operative legs. In contrast, this predilection was less apparent in younger mice as the infection occurred at a similar rate in both the operative and non-operative legs. X-ray imaging revealed that the operative legs of younger mice had decreased femoral length, likely due to the surgical and/or infectious insult to the more active physis, which was not observed in older mice. Both age groups demonstrated substantial reactive bone changes in the operative leg due to infection.
CONCLUSIONS: The presence of an implant was an important determinant for developing a hematogenous orthopaedic infection in older but not younger mice, whereas younger mice had a similar predilection for developing periarticular infection whether or not an implant was present. On a clinical scale, diagnosing HOIAI may be difficult particularly in at-risk patients with limited examination or other data points. Understanding the influence of age on developing HOIAI may guide clinical surveillance and decision-making in at-risk patients
Molecularly specific detection of bacterial lipoteichoic acid for diagnosis of prosthetic joint infection of the bone
Discriminating sterile inflammation from infection, especially in cases of aseptic loosening versus an actual prosthetic joint infection, is challenging and has significant treatment implications. Our goal was to evaluate a novel human monoclonal antibody (mAb) probe directed against the Gram-positive bacterial surface molecule lipoteichoic acid (LTA). Specificity and affinity were assessed in vitro. We then radiolabeled the anti-LTA mAb and evaluated its effectiveness as a diagnostic imaging tool for detecting infection via immunoPET imaging in an in vivo mouse model of prosthetic joint infection (PJI). In vitro and ex vivo binding of the anti-LTA mAb to pathogenic bacteria was measured with Octet, ELISA, and flow cytometry. The in vivo PJI mouse model was assessed using traditional imaging modalities, including positron emission tomography (PET) with [18F]FDG and [18F]NaF as well as X-ray computed tomography (CT), before being evaluated with the zirconium-89-labeled antibody specific for LTA ([89Zr]SAC55). The anti-LTA mAb exhibited specific binding in vitro to LTA-expressing bacteria. Results from imaging showed that our model could reliably simulate infection at the surgical site by bioluminescent imaging, conventional PET tracer imaging, and bone morphological changes by CT. One day following injection of both the radiolabeled anti-LTA and isotype control antibodies, the anti-LTA antibody demonstrated significantly greater (P < 0.05) uptake at S. aureus-infected prosthesis sites over either the same antibody at sterile prosthesis sites or of control non-specific antibody at infected prosthesis sites. Taken together, the radiolabeled anti-LTA mAb, [89Zr]SAC55, may serve as a valuable diagnostic molecular imaging probe to help distinguish between sterile inflammation and infection in the setting of PJI. Future studies are needed to determine whether these findings will translate to human PJI
Noninvasive optical and nuclear imaging of Staphylococcus-specific infection with a human monoclonal antibody-based probe
Staphylococcus aureus infections are a major threat in healthcare, requiring adequate early-stage diagnosis and treatment. This calls for novel diagnostic tools that allow noninvasive in vivo detection of staphylococci. Here we performed a preclinical study to investigate a novel fully-human monoclonal antibody 1D9 that specifically targets the immunodominant staphylococcal antigen A (IsaA). We show that 1D9 binds invariantly to S. aureus cells and may further target other staphylococcal species. Importantly, using a human post-mortem implant model and an in vivo murine skin infection model, preclinical feasibility was demonstrated for 1D9 labeled with the near-infrared fluorophore IRDye800CW to be applied for direct optical imaging of in vivo S. aureus infections. Additionally, (89)Zirconium-labeled 1D9 could be used for positron emission tomography imaging of an in vivo S. aureus thigh infection model. Our findings pave the way towards clinical implementation of targeted imaging of staphylococcal infections using the human monoclonal antibod
DKC1 is a transcriptional target of GATA1 and drives upregulation of telomerase activity in normal human erythroblasts
Telomerase is a ribonucleoprotein complex that maintains the length and integrity of telomeres, and thereby enables cellular proliferation. Understanding the regulation of telomerase in hematopoietic cells is relevant to the pathogenesis of leukemia, in which telomerase is constitutively activated, as well as bone marrow failure syndromes that feature telomerase insufficiency. Past studies showing high levels of telomerase in human erythroblasts and a prevalence of anemia in disorders of telomerase insufficiency provide the rationale for investigating telomerase regulation in erythroid cells. Here it is shown for the first time that the telomerase RNA-binding protein dyskerin (encoded by DKC1) is dramatically upregulated as human hematopoietic stem and progenitor cells commit to the erythroid lineage, driving an increase in telomerase activity in the presence of limiting amounts of TERT mRNA. It is also shown that upregulation of DKC1 was necessary for expansion of glycophorin A+ erythroblasts and sufficient to extend telomeres in erythroleukemia cells. Chromatin immunoprecipitation and reporter assays implicated GATA1-mediated transcriptional regulation of DKC1 in the modulation of telomerase in erythroid lineage cells. Together these results describe a novel mechanism of telomerase regulation in erythroid cells which contrasts with mechanisms centered on transcriptional regulation of TERT that are known to operate in other cell types. This is the first study to reveal a biological context in which telomerase is upregulated by DKC1 and to implicate GATA1 in telomerase regulation. The results from this study are relevant to hematopoietic disorders involving DKC1 mutations, GATA1 deregulation and/or telomerase insufficiency
The joint influence of area income, income inequality, and immigrant density on adverse birth outcomes: a population-based study
<p>Abstract</p> <p>Background</p> <p>The association between area characteristics and birth outcomes is modified by race. Whether such associations vary according to social class indicators beyond race has not been assessed.</p> <p>Methods</p> <p>This study evaluated effect modification by maternal birthplace and education of the relationship between neighbourhood characteristics and birth outcomes of newborns from 1999–2003 in the province of Québec, Canada (N = 353,120 births). Areas (N = 143) were defined as administrative local health service delivery districts. Multi-level logistic regression was used to model the association between three area characteristics (median household income, immigrant density and income inequality) and the two outcomes preterm birth (PTB) and small-for-gestational age (SGA) birth. Effect modification by social class indicators was evaluated in analyses stratified according to maternal birthplace and education.</p> <p>Results</p> <p>Relative to the lowest tertile, high median household income was associated with SGA birth among Canadian-born mothers (odds ratio (OR) 1.13, 95% confidence interval (CI) 1.06, 1.20) and mothers with high school education or less (OR 1.13, 95% CI 1.02, 1.24). Associations between median household income and PTB were weaker. Relative to the highest tertile, low immigrant density was associated with a lower odds of PTB among foreign-born mothers (OR 0.79, 95% CI 0.63, 1.00) but a higher odds of PTB among Canadian-born mothers (OR 1.14, 95% CI 1.07, 1.21). Associations with income inequality were weak or absent.</p> <p>Conclusion</p> <p>The association between area factors and birth outcomes is modified by maternal birthplace and education. Studies have found that race interacts in a similar manner. Public health policies focussed on perinatal health must consider the interaction between individual and area characteristics.</p
Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples
Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
SGC-CK2-1: The First Selective Chemical Probe for the Pleiotropic Kinase CK2
Building upon a wealth of published knowledge surrounding the pyrazolopyrimidine scaffold, we designed a small library around the most selective small molecule CK2 inhibitors reported. Through extensive evaluation of this library we identified inhibitor 24 (SGC-CK2-1) as a potent, selective, and cell-active CK2 chemical probe. Remarkably, despite years of research pointing to CK2 as a key driver in cancer, our probe did not elicit an antiproliferative phenotype in cell lines tested. While many publications have attempted tocharacterize CK2 function, CK2 biology is complex and a high-quality chemical tool like SGC-CK2-1 will aid in connecting CK2 functions to phenotypes
Strategy for Lead Identification for Understudied Kinases
In
our manuscript we outline an approach in which we convert a promiscuous
pyrimidine scaffold into narrowly selective, cell-active chemical leads for
several understudied kinases, including DRAK1, BMP2K, and MARK4. These chemical
tools will allow illumination of the function(s) of these poorly characterized
kinases for the first time. Several of the understudied kinases that we inhibit
with our pyrimidine-based compounds are also implicated in neurodegenerative
disease, pushing the utility of kinase inhibitors outside of the oncology space
and offering opportunities for the validation of therapeutic hypotheses
attributed to these kinases.</p
Towards a RIOK2 Chemical Probe: Cellular Potency Improvement of a Selective 2-(Acylamino)pyridine Series
RIOK2 is an understudied kinase associated with a variety of human cancers including non-small
cell lung cancer and glioblastoma. No potent, selective, and cell-active chemical probe currently
exists for RIOK2. Such a reagent would expedite research into the biological functions of RIOK2
and validate it as a therapeutic target. Herein, we describe the synthesis of naphthyl-pyridine
based compounds that have both improved cellular activity while maintaining selectivity for
RIOK2
- …