2 research outputs found

    High-Affinity VEGF Antagonists by Oligomerization of a Minimal Sequence VEGF-Binding Domain

    No full text
    Vascular endothelial growth factor (VEGF) neutralizing antagonists including antibodies or receptor extracellular domain Fc fusions have been applied clinically to control angiogenesis in cancer, wet age-related macular degeneration, and edema. We report here the generation of high-affinity VEGF-binding domains by chemical linkage of the second domain of the VEGF receptor Flt-1 (D2) in several configurations. Recombinant D2 was expressed with a 13 a.a. C-terminal tag, including a C-terminal cysteine to enable its dimerization by disulfide bond formation or by attachment to divalent PEGs and oligomerization by coupling to multivalent PEGs. Disulfide-linked dimers produced by Cu<sup>2+</sup> oxidation of the free-thiol form of the protein demonstrated picomolar affinity for VEGF in solution, comparable to that of a D2-Fc fusion (sFLT01) and ∼50-fold higher than monomeric D2, suggesting the 26 a.a. tag length between the two D2 domains permits simultaneous interaction of both faces of the VEGF homodimer. Extending the separation between the D2 domains by short PEG spacers from 0.35 kD to 5 kD produced a modest ∼2-fold increase in affinity over the disulfide, thus defining the optimal distance between the two D2 domains for maximum affinity. By surface plasmon resonance (SPR), a larger (∼5-fold) increase in affinity was observed by conjugation of the D2 monomer to the termini of 4-arm PEG, and yielding a product with a larger hydrodynamic radius than sFLT01. The higher affinity displayed by these D2 PEG tetramers than either D2 dimer or sFLT01 was largely a consequence of a slower rate of dissociation, suggesting the simultaneous binding by these tetramers to neighboring surface-bound VEGF. Finally, disulfide-linked D2 dimers showed a greater resistance to autocatalytic fragmentation than sFLT01 under elevated temperature stress, indicating such minimum-sequence constructs may be better suited for sustained-release formulations. Therefore, these constructs represent novel Fc-independent VEGF antagonists with ultrahigh affinity, high stability, and a range of hydrodynamic radii for application to multiple therapeutic targets

    Site-Specific Antibody–Drug Conjugation through Glycoengineering

    No full text
    Antibody–drug conjugates (ADCs) have been proven clinically to be more effective anti-cancer agents than native antibodies. However, the classical conjugation chemistries to prepare ADCs by targeting primary amines or hinge disulfides have a number of shortcomings including heterogeneous product profiles and linkage instability. We have developed a novel site-specific conjugation method by targeting the native glycosylation site on antibodies as an approach to address these limitations. The native glycans on Asn-297 of antibodies were enzymatically remodeled <i>in vitro</i> using galactosyl and sialyltransferases to introduce terminal sialic acids. Periodate oxidation of these sialic acids yielded aldehyde groups which were subsequently used to conjugate aminooxy functionalized cytotoxic agents via oxime ligation. The process has been successfully demonstrated with three antibodies including trastuzumab and two cytotoxic agents. Hydrophobic interaction chromatography and LC-MS analyses revealed the incorporation of ∼1.6 cytotoxic agents per antibody molecule, approximating the number of sialic acid residues. These glyco-conjugated ADCs exhibited target-dependent antiproliferative activity toward antigen-positive tumor cells and significantly greater antitumor efficacy than naked antibody in a Her2-positive tumor xenograft model. These findings suggest that enzymatic remodeling combined with oxime ligation of the native glycans of antibodies offers an attractive approach to generate ADCs with well-defined product profiles. The site-specific conjugation approach presented here provides a viable alternative to other methods, which involve a need to either re-engineer the antibody sequence or develop a highly controlled chemical process to ensure reproducible drug loading
    corecore