10 research outputs found

    Does adipose tissue-derived stem cell therapy improve graft quality in freshly grafted ovaries?

    Get PDF
    Abstract\ud \ud Background\ud A major concern in ovarian transplants is substantial follicle loss during the initial period of hypoxia. Adipose tissue-derived stem cells (ASCs) have been employed to improve angiogenesis when injected into ischemic tissue. This study evaluated the safety and efficacy of adipose tissue-derived stem cells (ASCs) therapy in the freshly grafted ovaries 30 days after injection.\ud \ud \ud Methods\ud Rat ASCs (rASCs) obtained from transgenic rats expressing green fluorescent protein (GFP)-(5 × 104 cells/ovary) were injected in topic (intact) or freshly grafted ovaries of 30 twelve-week-old adult female Wistar rats. The whole ovary was grafted in the retroperitoneum without vascular anastomosis, immediately after oophorectomy. Vaginal smears were performed daily to assess the resumption of the estrous cycle. Estradiol levels, grafts morphology and follicular viability and density were analyzed. Immunohistochemistry assays were conducted to identify and quantify rASC-GFP+, VEGF tissue expression, apoptosis (cleaved caspase-3 and TUNEL), and cell proliferation (Ki-67). Quantitative gene expression (qPCR) for VEGF-A, Bcl2, EGF and TGF-β1 was evaluated using RT-PCR and a double labeling immunofluorescence assay for GFP and Von Willebrand Factor (VWF) was performed.\ud \ud \ud Results\ud Grafted ovaries treated with rASC-GFP+ exhibited earlier resumption of the estrous phase (p < 0.05), increased VEGF-A expression (11-fold in grafted ovaries and 5-fold in topic ovaries vs. control) and an increased number of blood vessels (p < 0.05) in ovarian tissue without leading to apoptosis or cellular proliferation (p > 0.05). Estradiol levels were similar among groups (p > 0.05). rASC-GFP+ were observed in similar quantities in the topic and grafted ovaries (p > 0.05), and double-labeling for GFP and vWF was observed in both injected groups.\ud \ud \ud Conclusion\ud rASC therapy in autologous freshly ovarian grafts could be feasible and safe, induces earlier resumption of the estrous phase and enhances blood vessels in rats. This pilot study may be useful in the future for new researches on frozen-thawed ovarian tissue.São Paulo Research Foundation (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Atypical β-Adrenoceptor Subtypes Mediate Relaxations of Rabbit Corpus Cavernosum

    No full text

    Stimulation Of Soluble Guanylyl Cyclase By Bay 41-2272 Relaxes Anococcygeus Muscle: Interaction With Nitric Oxide.

    No full text
    The compound BAY 41-2272 stimulates the soluble guanylyl cyclase in a nitric oxide (NO)-independent manner. We have investigated the potency and efficacy of BAY 41-2272 in the rat anococcygeus muscle, as well as the effects of BAY 41-2272 on NO-mediated anococcygeus relaxations. BAY 41-2272 (0.01-10 microM) potently relaxed precontracted anococcygeus muscle strips, with a pEC(50) value of 6.44 +/- 0.03 and maximum response of 100 +/- 2%. The soluble guanylyl cyclase inhibitor 1H-[1,2,4]-oxidiazolo[4,3-a] quinoxalin-1-one (ODQ, 1 microM) and the NO inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME, 100 microM) caused significant rightward shifts in the concentration-response curves to BAY 41-2272. The phosphodiesterase type-5 inhibitor tadalafil (0.1 microM) markedly enhanced the relaxations evoked by BAY 41-2272. In addition, BAY 41-2272 increased the duration of nitrergic relaxations by approximately 55%. The relaxations induced by glyceryl trinitrate were also significantly potentiated by BAY 41-2272. In conclusion, BAY 41-2272 interacts with endogenous and exogenous NO causing a potent relaxation of rat anococcygeus muscle.530157-6

    Relaxing Effects Induced By The Soluble Guanylyl Cyclase Stimulator Bay 41-2272 In Human And Rabbit Corpus Cavernosum.

    No full text
    5-Cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine (BAY 41-2272) is a potent soluble guanylyl cyclase stimulator in a nitric oxide (NO)-independent manner. The relaxant effect of BAY 41-2272 was investigated in rabbit and human corpus cavernosum in vitro. BAY 41-2272 (0.01-10 microM) relaxed both rabbit (pEC(50)=6.82+/-0.06) and human (pEC(50)=6.12+/-0.10) precontracted cavernosal strips. The guanylyl cyclase inhibitor (ODQ, 10 microM) caused significant rightward shifts in the concentration-response curves for BAY 41-2272 in rabbit (4.7-fold) and human (2.3-fold) tissues. The NO synthesis inhibitor (N-nitro-L-arginine methyl ester (L-NAME), 100 microM) also produced similar rightward shifts, revealing that BAY 41-2272 acts synergistically with endogenous NO to elicit its relaxant effect. The results also indicate that ODQ is selective for the NO-stimulated enzyme, since relaxations evoked by BAY 41-2272 were only partly attenuated by ODQ. The present study shows that both BAY 41-2272 and sildenafil evoke relaxations independent of inhibition of haem in soluble guanylate cyclase. Moreover, there is no synergistic effect of the two compounds in corpus cavernosum.477163-

    Nitric Oxide Release From Human Corpus Cavernosum Induced By A Purified Scorpion Toxin.

    No full text
    To investigate the effects of a purified scorpion toxin (Ts3) on human corpus cavernosum (HCC) in vitro. Scorpion venoms cause a massive release of neurotransmitters that contribute to the clinical symptoms resulting from envenomation. HCC strips were mounted in organ baths containing Krebs solution. After equilibration, the tissues were precontracted with phenylephrine (10 micromol/L). The relaxations caused by Ts3 (30 nmol/L) were compared with those induced by electrical field stimulation (1 to 20 Hz) and nitric oxide (NO, 1 to 100 micromol/L). The addition of Ts3 evoked long-lasting relaxations of precontracted HCC strips, and exogenously applied NO and electrical field stimulation caused short-lived responses. The NO synthesis inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME; 100 micromol/L) reduced by 87% +/- 2% the Ts3-induced relaxations; this inhibition was reversed by pretreating the tissues with L-arginine (1 mmol/L). The relaxant responses mediated by Ts3 were blocked to a similar degree by the soluble guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3,-alquinoxalin-1-one] (10 micromol/L). In contrast, the addition of the phosphodiesterase type 5 inhibitor sildenafil (0.1 micromol/L) significantly enhanced Ts3-evoked relaxations by 78% +/- 4%. The sodium channel blocker tetrodotoxin (1 micromol/L) completely blocked the relaxant responses elicited by both Ts3 and electrical field stimulation, without significantly affecting those elicited by NO. The results indicate that Ts3 relaxes the HCC through the release of NO from nitrergic nerves. The elucidation of this mechanism is useful for the development of new therapeutic strategies to treat priapism after scorpion envenomation or to modulate sodium channel activity in the case of penile dysfunction.63184-

    Melatonin effects on the female genital system: A brief review

    No full text
    Melatonin is secreted by the pineal gland and this is linked to the day/night cycle. It is an antioxidant and plays a fundamental role in the regulation of the jet-lag stage, in several physiological reactions and in control of the biologic rhythm, Human melatonin has an Important influence on the female genital system. in fact, melatonin may influence production and action of steroids, modifying cellular signalization on the target tissue. There are many evidences that the melatonin therapy may be interfering with neoplasia development, mainly of the estrogen-dependent tumor. This paper aims to analyze the actions of melatonin on the neuroendocrine, immunological and cardiovascular systems, as well as on the reproductive function.A melatonina é um hormônio produzido pela glândula pineal, cuja secreção está diretamente relacionada ao ciclo claro-escuro. É um poderoso antioxidante e tem papel fundamental na regulação do estado sono/vigília, do ritmo de vários processos fisiológicos, participando do controle do relógio biológico, inclusive nos seres humanos. Ressalta-se que há evidências da sua ação no sistema genital feminino, influenciando a função ovariana e a fertilidade. De fato, este hormônio interage com esteróides sexuais, como o estrogênio, modificando a sinalização celular e a resposta no tecido alvo. Estudos clínicos sugerem que o tratamento com a melatonina interviria com a evolução de neoplasia-dependente do estrogênio. O objetivo dessa revisão é analisar as principais ações da melatonina no sistema neuroendócrino, no ciclo sono-vigília, no sistema imunológico, no sistema cardiovascular, bem como no sistema reprodutor.Trabalho Realizado UNIFESP EPM, São Paulo, BrazilTrabalho Realizado UNIFESP EPM, São Paulo, BrazilWeb of Scienc
    corecore