39 research outputs found

    Synergistic insights into human health from aptamer- and antibody-based proteomic profiling.

    Get PDF
    Funder: Wellcome TrustAffinity-based proteomics has enabled scalable quantification of thousands of protein targets in blood enhancing biomarker discovery, understanding of disease mechanisms, and genetic evaluation of drug targets in humans through protein quantitative trait loci (pQTLs). Here, we integrate two partly complementary techniques-the aptamer-based SomaScan® v4 assay and the antibody-based Olink assays-to systematically assess phenotypic consequences of hundreds of pQTLs discovered for 871 protein targets across both platforms. We create a genetically anchored cross-platform proteome-phenome network comprising 547 protein-phenotype connections, 36.3% of which were only seen with one of the two platforms suggesting that both techniques capture distinct aspects of protein biology. We further highlight discordance of genetically predicted effect directions between assays, such as for PILRA and Alzheimer's disease. Our results showcase the synergistic nature of these technologies to better understand and identify disease mechanisms and provide a benchmark for future cross-platform discoveries.The Fenland Study (10.22025/2017.10.101.00001) is funded by the Medical Research Council (MC_UU_12015/1). We are grateful to all the volunteers and to the General Practitioners and practice staff for assistance with recruitment. We thank the Fenland Study Investigators, Fenland Study Co-ordination team and the Epidemiology Field, Data and Laboratory teams. We further acknowledge support for genomics from the Medical Research Council (MC_PC_13046). Proteomic measurements were supported and governed by a collaboration agreement between the University of Cambridge and Somalogic. JCZ is supported by a 4-year Wellcome Trust PhD Studentship and the Cambridge Trust, CL, EW, and NJW are funded by the Medical Research Council (MC_UU_12015/1). NJW is a NIHR Senior Investigator. ADH is an NIHR Senior Investigator and supported by the UCL Hospitals NIHR Biomedical Research Centre and the UCL BHF Research Accelerator (AA/18/6/34223). We thank Philippa Pettingill, Ida Grundberg, Klev Diamanti, and Andrea Ballagi for advice and comments on an earlier draft of this manuscript. We thank Vladimir Saudek for generating a 3D-model of variant GDF-15 protein

    Proteomic signatures for identification of impaired glucose tolerance

    Get PDF
    The implementation of recommendations for type 2 diabetes (T2D) screening and diagnosis focuses on the measurement of glycated hemoglobin (HbA1c) and fasting glucose. This approach leaves a large number of individuals with isolated impaired glucose tolerance (iIGT), who are only detectable through oral glucose tolerance tests (OGTTs), at risk of diabetes and its severe complications. We applied machine learning to the proteomic profiles of a single fasted sample from 11,546 participants of the Fenland study to test discrimination of iIGT defined using the gold-standard OGTTs. We observed significantly improved discriminative performance by adding only three proteins (RTN4R, CBPM and GHR) to the best clinical model (AUROC = 0.80 (95% confidence interval: 0.79–0.86), P = 0.004), which we validated in an external cohort. Increased plasma levels of these candidate proteins were associated with an increased risk for future T2D in an independent cohort and were also increased in individuals genetically susceptible to impaired glucose homeostasis and T2D. Assessment of a limited number of proteins can identify individuals likely to be missed by current diagnostic strategies and at high risk of T2D and its complications

    Author Correction:Proteogenomic links to human metabolic diseases (Nature Metabolism, (2023), 5, 3, (516-528), 10.1038/s42255-023-00753-7)

    No full text
    Correction to: Nature Metabolism. Published online 23 February 2023. In the version of this article originally published, there was a typographical error in the sample size given in the Data availability section, which now reads, in part, “The genome-wide summary statistics resulting from the meta-analysis between discovery and replication samples (n = 2,887),” where “2,887” has replaced “2,287”. The correction has been made in the HTML and PDF versions of the article.</p

    CO2 reuse NRW : evaluating gas sources, demand and utilization for CO2 and H2 within the North Rhine-Westphalia area with respect to gas qualities ; final report

    Get PDF
    The CO2 utilisation is discussed as one of the future low-carbon technologies in order to accomplish a full decarbonisation in the energy intensive industry. CO2 is separated from the flue gas stream of power plants or industrial plants and is prepared for further processing as raw material. CO2 containing gas streams from industrial processes exhibit a higher concentration of CO2 than flue gases from power plants; consequentially, industrial CO2 sources are used as raw material for the chemical industry and for the synthesis of fuel on the output side. Additionally, fossil resources can be replaced by substitutes of reused CO2 on the input side. If set up in a right way, this step into a CO2-based circular flow economy could make a contribution to the decarbonisation of the industrial sector and according to the adjusted potential, even rudimentarily to the energy sector. In this study, the authors analyse potential CO2 sources, the potential demand and the range of applications of CO2. In the last chapter of the final report, they give recommendations for research, development, politics and economics for an appropriate future designing of CO2 utilisation options based upon their previous analysis
    corecore