21 research outputs found

    Testing the salinity tolerance levels of similar invasive species found in the San Francisco Bay

    Get PDF
    Testing the salinity tolerance levels of similar invasive species found in the San Francisco Bay Julia Smith1,2, Elizabeth Sheets2, and C. Sarah Cohen2 1Department of Teacher Education, California State University, Sacramento 2Department of Biology and Romberg Tiburon Center, San Francisco State University Three non-indigenous colonial ascidian species, Botrylloides violaceus, Botrylloides diegensis, and Botryllus schlosseri, have become well established in San Francisco Bay. Two species, B. violaceous and B. schlosseri, are globally distributed, and understanding the salinity ranges and tolerances of these successful invaders in their introduced habitats is important for predicting their spread. We tested the tolerance of these three morphologically similar species to salinity ranges that they may encounter locally in San Francisco Bay, and globally, in their broad distributions, including a freshwater transit experiment designed to simulate conditions for ships transiting through the Panama Canal. Botrylloides violaceus, B. diegensis, and Botryllus schlosseri were exposed to various salinities (10, 15, 18, and 20 ppt) for a period of 14 hours, and then assessed for two signs of vitality immediately after each treatment, and were monitored for survival after a week. Our preliminary results showed survival of Botrylloides diegensis, and B. violaceus at the lowest (10 ppt) salinity treatment after 1 week, but no colonies of Botryllus schlosseri survived this salinity treatment in a preliminary trial. The three species all showed survival at our higher (15, 18, and 20 ppt) salinity treatments. In a separate trial, the three target species were also exposed to a drastic salinity decrease to 0 ppt for 7 hours, related to conditions in the Panama Canal. There were no signs of immediate survival in colonies that experienced very low salinity conditions. However, small vascular fragments appear to remain in many colonies three weeks later, and are currently being monitored in the event that they may regenerate, as local colonies of each of these speceis have successfully carried out whole body regeneration from vascular fragments as small as 3.9 mm (Benson Chow, unpub. data)

    Members of Marinobacter and Arcobacter Influence System Biogeochemistry During Early Production of Hydraulically Fractured Natural Gas Wells in the Appalachian Basin

    Get PDF
    Hydraulic fracturing is the prevailing method for enhancing recovery of hydrocarbon resources from unconventional shale formations, yet little is understood regarding the microbial impact on biogeochemical cycling in natural-gas wells. Although the metabolisms of certain fermentative bacteria and methanogenic archaea that dominate in later produced fluids have been well studied, few details have been reported on microorganisms prevelant during the early flowback period, when oxygen and other surface-derived oxyanions and nutrients become depleted. Here, we report the isolation, genomic and phenotypic characterization of Marinobacter and Arcobacter bacterial species from natural-gas wells in the Utica-Point Pleasant and Marcellus Formations coupled to supporting geochemical and metagenomic analyses of produced fluid samples. These unconventional hydrocarbon system-derived Marinobacter sp. are capable of utilizing a diversity of organic carbon sources including aliphatic and aromatic hydrocarbons, amino acids, and carboxylic acids. Marinobacter and Arcobacter can metabolize organic nitrogen sources and have the capacity for denitrification and dissimilatory nitrate reduction to ammonia (DNRA) respectively; with DNRA and ammonification processes partially explaining high concentrations of ammonia measured in produced fluids. Arcobacter is capable of chemosynthetic sulfur oxidation, which could fuel metabolic processes for other heterotrophic, fermentative, or sulfate-reducing community members. Our analysis revealed mechanisms for growth of these taxa across a broad range of salinities (up to 15% salt), which explains their enrichment during early natural-gas production. These results demonstrate the prevalence of Marinobacter and Arcobacter during a key maturation phase of hydraulically fractured natural-gas wells, and highlight the significant role these genera play in biogeochemical cycling for this economically important energy system

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    Patterns and Processes of Salt Efflorescences in the McMurdo region, Antarctica

    Get PDF
    Evaporite salts are abundant around the McMurdo region, Antarctica (~78°S) due to very low precipitation, low relative humidity, and limited overland flow. Hygroscopic salts in the McMurdo Dry Valleys (MDVs) are preferentially formed in locations where liquid water is present in the austral summer, including along ephemeral streams, ice-covered lake boundaries, or shallow groundwater tracks. In this study, we collected salts from the Miers, Garwood, and Taylor Valleys on the Antarctic continent, as well as around McMurdo Station on Ross Island in close proximity to water sources with the goal of understanding salt geochemistry in relationship to the hydrology of the area. Halite is ubiquitous; sodium is the major cation (ranging from 70%–90% of cations by meq kg-1 sediment) and chloride is the major anion (\u3e50%) in nearly all samples. However, a wide variety of salt phases and morphologies are tentatively identified through scanning electron microscopy (SEM) and X-ray diffraction (XRD) work. We present new data that identifies trona (Na3(CO3)(HCO3)·2H2O), tentative gaylussite (Na2Ca(CO3)2·5H2O), and tentative glauberite (Na2Ca(SO4)2) in the MDV, of which the later one has not been documented previously. Our work allows for the evaluation of processes that influence brine evolution on a local scale, consequently informing assumptions underlying large-scale processes (such as paleoclimate) in the MDV. Hydrological modeling conducted in FREZCHEM and PHREEQC suggests that a model based on aerosol deposition alone in low elevations on the valley floor inadequately characterizes salt distributions found on the surfaces of the soil because it does not account for other hydrologic inputs/outputs. Implications for the salt distributions include their use as tracers for paleolake levels, geochemical tracers of ephemeral water tracks or “wet patches” in the soil, indicators of chemical weathering products, and potential delineators of ecological communities

    Aeolian Dust Preserved in the Guliya Ice Cap (Northwestern Tibet): A Promising Paleo-Environmental Messenger

    No full text
    Asian aeolian dust is a primary factor in Northern Hemisphere atmospheric dynamics. Predicting past and future changes in atmospheric circulation patterns relies in part on sound knowledge of Central Asian dust properties and the dust cycle. Unfortunately for that region, data are too sparse to constrain the variation in dust composition over time. Here, we evaluate the potential of a Tibetan ice core to provide a comprehensive paleo-atmospheric dust record and thereby reduce uncertainties regarding mineral aerosols’ feedback on the climate system. We present the first datasets of the mineralogical, geochemical, and Sr-Nd isotope composition of aeolian dust preserved in pre-Holocene layers of two ice cores from the Guliya ice cap (Kunlun Mountains). The composition of samples from the Summit (GS; 6710 m a.s.l.) and Plateau (GP; 6200 m a.s.l.) cores reveals that the characteristics of the dust in the cores’ deepest ice layers are significantly different. The deepest GS layers reveal isotopic values that correspond to aeolian particles from the Taklimakan desert, contain a mix of fine and coarse grains, and include weathering-sensitive material suggestive of a dry climate at the source. The deep GP layers primarily consist of unusual nodules of well size-sorted grey clay enriched in weathering-resistant minerals and elements typically found in geothermal waters, suggesting that the dust preserved in the oldest GP layers originates from a wet and possibly anoxic source. The variability of the dust composition highlighted here attests to its relevance as a paleo-environmental messenger and warrants further exploration of the particularly heterogenous Guliya glacial dust archive

    Aeolian Dust Preserved in the Guliya Ice Cap (Northwestern Tibet): A Promising Paleo-Environmental Messenger

    No full text
    Asian aeolian dust is a primary factor in Northern Hemisphere atmospheric dynamics. Predicting past and future changes in atmospheric circulation patterns relies in part on sound knowledge of Central Asian dust properties and the dust cycle. Unfortunately for that region, data are too sparse to constrain the variation in dust composition over time. Here, we evaluate the potential of a Tibetan ice core to provide a comprehensive paleo-atmospheric dust record and thereby reduce uncertainties regarding mineral aerosols’ feedback on the climate system. We present the first datasets of the mineralogical, geochemical, and Sr-Nd isotope composition of aeolian dust preserved in pre-Holocene layers of two ice cores from the Guliya ice cap (Kunlun Mountains). The composition of samples from the Summit (GS; 6710 m a.s.l.) and Plateau (GP; 6200 m a.s.l.) cores reveals that the characteristics of the dust in the cores’ deepest ice layers are significantly different. The deepest GS layers reveal isotopic values that correspond to aeolian particles from the Taklimakan desert, contain a mix of fine and coarse grains, and include weathering-sensitive material suggestive of a dry climate at the source. The deep GP layers primarily consist of unusual nodules of well size-sorted grey clay enriched in weathering-resistant minerals and elements typically found in geothermal waters, suggesting that the dust preserved in the oldest GP layers originates from a wet and possibly anoxic source. The variability of the dust composition highlighted here attests to its relevance as a paleo-environmental messenger and warrants further exploration of the particularly heterogenous Guliya glacial dust archive

    Gravity-driven controls on fluid and carbonate precipitation distributions in fractures

    Get PDF
    Abstract Many challenges related to carbon-dioxide ( CO2\hbox {CO}_2 CO 2 ) sequestration in subsurface rock are linked to the injection of fluids through induced or existing fracture networks and how these fluids are altered through geochemical interactions. Here, we demonstrate that fluid mixing and carbonate mineral distributions in fractures are controlled by gravity-driven chemical dynamics. Using optical imaging and numerical simulations, we show that a density contrast between two miscible fluids causes the formation of a low-density fluid runlet that increases in areal extent as the fracture inclination decreases from 90 ∘^\circ ∘ (vertical fracture plane) to 30 ∘^\circ ∘ . The runlet is sustained over time and the stability of the runlet is controlled by the gravity-driven formation of 3D vortices that arise in a laminar flow regime. When homogeneous precipitation was induced, calcium carbonate covered the entire surface for horizontal fractures (0 ∘^\circ ∘ ). However, for fracture inclinations greater than 10 ∘^\circ ∘ , the runlet formation limited the areal extent of the precipitation to less than 15% of the fracture surface. These insights suggest that the ability to sequester CO2\hbox {CO}_2 CO 2 through mineralization along fractures will depend on the fracture orientation relative to gravity, with horizontal fractures more likely to seal uniformly
    corecore