502 research outputs found
Radiative Corrections to Longitudinal and Transverse Gauge Boson and Higgs Production
Radiative corrections to gauge boson and Higgs production computed recently
using soft-collinear effective theory (SCET) require the one-loop high-scale
matching coefficients in the standard model. We give explicit expressions for
the matching coefficients for the effective field theory (EFT) operators for q
qbar -> VV and q qbar -> phi^+ phi for a general gauge theory with an arbitrary
number of gauge groups. The group theory factors are given explicitly for the
standard model, including both QCD and electroweak corrections.Comment: 16 pages, 49 figure
Electroweak Sudakov Corrections using Effective Field Theory
Electroweak Sudakov corrections of the form alpha^n log^m s/M_{W,Z}^2 are
summed using renormalization group evolution in soft-collinear effective theory
(SCET). Results are given for the scalar, vector and tensor form-factors for
fermion and scalar particles. The formalism for including massive gauge bosons
in SCET is developed.Comment: 5 page
Electroweak Corrections using Effective Field Theory: Applications to the LHC
Electroweak Sudakov logarithms at high energy, of the form alpha/sin^2
theta_W^n log^m s/M_{Z,W}^2, are summed using effective theory (EFT) methods.
The exponentiation of Sudakov logarithms and factorization is discussed in the
EFT formalism. Radiative corrections are computed to scattering processes in
the standard model involving an arbitrary number of external particles. The
computations include non-zero particle masses such as the t-quark mass,
electroweak mixing effects which lead to unequal W and Z masses and a massless
photon, and Higgs corrections proportional to the top quark Yukawa coupling.
The structure of the radiative corrections, and which terms are summed by the
EFT renormalization group is discussed in detail. The omitted terms are smaller
than 1%. We give numerical results for the corrections to dijet production,
dilepton production, t-\bar t production, and squark pair production. The
purely electroweak corrections are significant -- about 15% at 1 TeV,
increasing to 30% at 5 TeV, and they change both the scattering rate and
angular distribution. The QCD corrections (which are well-known) are also
computed with the EFT. They are much larger -- about a factor of four at 1 TeV,
increasing to a factor of thirty at 5 TeV. Mass effects are also significant;
the q \bar q -> t \bar t rate is enchanced relative to the light-quark
production rate by 40%.Comment: Additional details added on exponentiation, and the form of the
Sudakov series. Figures darkened to print better. 40 pages, 40 figure
Soft-Collinear Factorization and Zero-Bin Subtractions
We study the Sudakov form factor for a spontaneously broken gauge theory
using a (new) Delta -regulator. To be well-defined, the effective theory
requires zero-bin subtractions for the collinear sectors. The zero-bin
subtractions depend on the gauge boson mass M and are not scaleless. They have
both finite and 1/epsilon contributions, and are needed to give the correct
anomalous dimension and low-scale matching contributions. We also demonstrate
the necessity of zero-bin subtractions for soft-collinear factorization. We
find that after zero-bin subtractions the form factor is the sum of the
collinear contributions 'minus' a soft mass-mode contribution, in agreement
with a previous result of Idilbi and Mehen in QCD. This appears to conflict
with the method-of-regions approach, where one gets the sum of contributions
from different regions.Comment: 9 pages, 5 figures. V2:ref adde
Recommended from our members
Functional Effects of let-7g Expression in Colon Cancer Metastasis.
MicroRNA regulation is crucial for gene expression and cell functions. It has been linked to tumorigenesis, development and metastasis in colorectal cancer (CRC). Recently, the let-7 family has been identified as a tumor suppressor in different types of cancers. However, the function of the let-7 family in CRC metastasis has not been fully investigated. Here, we focused on analyzing the role of let-7g in CRC. The Cancer Genome Atlas (TCGA) genomic datasets of CRC and detailed data from a Taiwanese CRC cohort were applied to study the expression pattern of let-7g. In addition, in vitro as well as in vivo studies have been performed to uncover the effects of let-7g on CRC. We found that the expression of let-7g was significantly lower in CRC specimens. Our results further supported the inhibitory effects of let-7g on CRC cell migration, invasion and extracellular calcium influx through store-operated calcium channels. We report a critical role for let-7g in the pathogenesis of CRC and suggest let-7g as a potential therapeutic target for CRC treatment
Factorization Structure of Gauge Theory Amplitudes and Application to Hard Scattering Processes at the LHC
Previous work on electroweak radiative corrections to high energy scattering
using soft-collinear effective theory (SCET) has been extended to include
external transverse and longitudinal gauge bosons and Higgs bosons. This allows
one to compute radiative corrections to all parton-level hard scattering
amplitudes in the standard model to NLL order, including QCD and electroweak
radiative corrections, mass effects, and Higgs exchange corrections, if the
high-scale matching, which is suppressed by two orders in the log counting, and
contains no large logs, is known. The factorization structure of the effective
theory places strong constraints on the form of gauge theory amplitudes at high
energy for massless and massive gauge theories, which are discussed in detail
in the paper. The radiative corrections can be written as the sum of
process-independent one-particle collinear functions, and a universal soft
function. We give plots for the radiative corrections to q qbar -> W_T W_T, Z_T
Z_T, W_L W_L, and Z_L H, and gg -> W_T W_T to illustrate our results. The
purely electroweak corrections are large, ranging from 12% at 500 GeV to 37% at
2 TeV for transverse W pair production, and increasing rapidly with energy. The
estimated theoretical uncertainty to the partonic (hard) cross-section in most
cases is below one percent, smaller than uncertainties in the parton
distribution functions (PDFs). We discuss the relation between SCET and other
factorization methods, and derive the Magnea-Sterman equations for the Sudakov
form factor using SCET, for massless and massive gauge theories, and for light
and heavy external particles.Comment: 44 pages, 30 figures. Refs added, typos fixed. ZL ZL plots removed
because of a possible subtlet
Single-crystalline δ-Ni2Si nanowires with excellent physical properties
[[abstract]]In this article, we report the synthesis of single-crystalline nickel silicide nanowires (NWs) via chemical vapor deposition method using NiCl2·6H2O as a single-source precursor. Various morphologies of δ-Ni2Si NWs were successfully acquired by controlling the growth conditions. The growth mechanism of the δ-Ni2Si NWs was thoroughly discussed and identified with microscopy studies. Field emission measurements show a low turn-on field (4.12 V/μm), and magnetic property measurements show a classic ferromagnetic characteristic, which demonstrates promising potential applications for field emitters, magnetic storage, and biological cell separation.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]電子版[[booktype]]紙
- …
