78 research outputs found

    Machine learning of hierarchical clustering to segment 2D and 3D images

    Get PDF
    We aim to improve segmentation through the use of machine learning tools during region agglomeration. We propose an active learning approach for performing hierarchical agglomerative segmentation from superpixels. Our method combines multiple features at all scales of the agglomerative process, works for data with an arbitrary number of dimensions, and scales to very large datasets. We advocate the use of variation of information to measure segmentation accuracy, particularly in 3D electron microscopy (EM) images of neural tissue, and using this metric demonstrate an improvement over competing algorithms in EM and natural images.Comment: 15 pages, 8 figure

    Usefulness and limitations of dK random graph models to predict interactions and functional homogeneity in biological networks under a pseudo-likelihood parameter estimation approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many aspects of biological functions can be modeled by biological networks, such as protein interaction networks, metabolic networks, and gene coexpression networks. Studying the statistical properties of these networks in turn allows us to infer biological function. Complex statistical network models can potentially more accurately describe the networks, but it is not clear whether such complex models are better suited to find biologically meaningful subnetworks.</p> <p>Results</p> <p>Recent studies have shown that the degree distribution of the nodes is not an adequate statistic in many molecular networks. We sought to extend this statistic with 2nd and 3rd order degree correlations and developed a pseudo-likelihood approach to estimate the parameters. The approach was used to analyze the MIPS and BIOGRID yeast protein interaction networks, and two yeast coexpression networks. We showed that 2nd order degree correlation information gave better predictions of gene interactions in both protein interaction and gene coexpression networks. However, in the biologically important task of predicting functionally homogeneous modules, degree correlation information performs marginally better in the case of the MIPS and BIOGRID protein interaction networks, but worse in the case of gene coexpression networks.</p> <p>Conclusion</p> <p>Our use of dK models showed that incorporation of degree correlations could increase predictive power in some contexts, albeit sometimes marginally, but, in all contexts, the use of third-order degree correlations decreased accuracy. However, it is possible that other parameter estimation methods, such as maximum likelihood, will show the usefulness of incorporating 2nd and 3rd degree correlations in predicting functionally homogeneous modules.</p

    An integrative modular approach to systematically predict gene-phenotype associations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Complex human diseases are often caused by multiple mutations, each of which contributes only a minor effect to the disease phenotype. To study the basis for these complex phenotypes, we developed a network-based approach to identify coexpression modules specifically activated in particular phenotypes. We integrated these modules, protein-protein interaction data, Gene Ontology annotations, and our database of gene-phenotype associations derived from literature to predict novel human gene-phenotype associations. Our systematic predictions provide us with the opportunity to perform a global analysis of human gene pleiotropy and its underlying regulatory mechanisms.</p> <p>Results</p> <p>We applied this method to 338 microarray datasets, covering 178 phenotype classes, and identified 193,145 phenotype-specific coexpression modules. We trained random forest classifiers for each phenotype and predicted a total of 6,558 gene-phenotype associations. We showed that 40.9% genes are pleiotropic, highlighting that pleiotropy is more prevalent than previously expected. We collected 77 ChIP-chip datasets studying 69 transcription factors binding over 16,000 targets under various phenotypic conditions. Utilizing this unique data source, we confirmed that dynamic transcriptional regulation is an important force driving the formation of phenotype specific gene modules.</p> <p>Conclusion</p> <p>We created a genome-wide gene to phenotype mapping that has many potential implications, including providing potential new drug targets and uncovering the basis for human disease phenotypes. Our analysis of these phenotype-specific coexpression modules reveals a high prevalence of gene pleiotropy, and suggests that phenotype-specific transcription factor binding may contribute to phenotypic diversity. All resources from our study are made freely available on our online Phenotype Prediction Database <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>.</p

    Joint Genome-Wide Profiling of miRNA and mRNA Expression in Alzheimer's Disease Cortex Reveals Altered miRNA Regulation

    Get PDF
    Although microRNAs are being extensively studied for their involvement in cancer and development, little is known about their roles in Alzheimer's disease (AD). In this study, we used microarrays for the first joint profiling and analysis of miRNAs and mRNAs expression in brain cortex from AD and age-matched control subjects. These data provided the unique opportunity to study the relationship between miRNA and mRNA expression in normal and AD brains. Using a non-parametric analysis, we showed that the levels of many miRNAs can be either positively or negatively correlated with those of their target mRNAs. Comparative analysis with independent cancer datasets showed that such miRNA-mRNA expression correlations are not static, but rather context-dependent. Subsequently, we identified a large set of miRNA-mRNA associations that are changed in AD versus control, highlighting AD-specific changes in the miRNA regulatory system. Our results demonstrate a robust relationship between the levels of miRNAs and those of their targets in the brain. This has implications in the study of the molecular pathology of AD, as well as miRNA biology in general

    An integrative approach to characterize disease-specific pathways and their coordination: a case study in cancer

    Get PDF
    BACKGROUND: The most common application of microarray technology in disease research is to identify genes differentially expressed in disease versus normal tissues. However, it is known that, in complex diseases, phenotypes are determined not only by genes, but also by the underlying structure of genetic networks. Often, it is the interaction of many genes that causes phenotypic variations. RESULTS: In this work, using cancer as an example, we develop graph-based methods to integrate multiple microarray datasets to discover disease-related co-expression network modules. We propose an unsupervised method that take into account both co-expression dynamics and network topological information to simultaneously infer network modules and phenotype conditions in which they are activated or de-activated. Using our method, we have discovered network modules specific to cancer or subtypes of cancers. Many of these modules are consistent with or supported by their functional annotations or their previously known involvement in cancer. In particular, we identified a module that is predominately activated in breast cancer and is involved in tumor suppression. While individual components of this module have been suggested to be associated with tumor suppression, their coordinated function has never been elucidated. Here by adopting a network perspective, we have identified their interrelationships and, particularly, a hub gene PDGFRL that may play an important role in this tumor suppressor network. CONCLUSION: Using a network-based approach, our method provides new insights into the complex cellular mechanisms that characterize cancer and cancer subtypes. By incorporating co-expression dynamics information, our approach can not only extract more functionally homogeneous modules than those based solely on network topology, but also reveal pathway coordination beyond co-expression

    Gene Aging Nexus: a web database and data mining platform for microarray data on aging

    Get PDF
    The recent development of microarray technology provided unprecedented opportunities to understand the genetic basis of aging. So far, many microarray studies have addressed aging-related expression patterns in multiple organisms and under different conditions. The number of relevant studies continues to increase rapidly. However, efficient exploitation of these vast data is frustrated by the lack of an integrated data mining platform or other unifying bioinformatic resource to enable convenient cross-laboratory searches of array signals. To facilitate the integrative analysis of microarray data on aging, we developed a web database and analysis platform ‘Gene Aging Nexus’ (GAN) that is freely accessible to the research community to query/analyze/visualize cross-platform and cross-species microarray data on aging. By providing the possibility of integrative microarray analysis, GAN should be useful in building the systems-biology understanding of aging. GAN is accessible at

    Metabolic sensing in AgRP neurons integrates homeostatic state with dopamine signalling in the striatum

    Get PDF
    Agouti-related peptide (AgRP) neurons increase motivation for food, however, whether metabolic sensing of homeostatic state in AgRP neurons potentiates motivation by interacting with dopamine reward systems is unexplored. As a model of impaired metabolic-sensing, we used the AgRP-specific deletion of carnitine acetyltransferase (Crat) in mice. We hypothesised that metabolic sensing in AgRP neurons is required to increase motivation for food reward by modulating accumbal or striatal dopamine release. Studies confirmed that Crat deletion in AgRP neurons (KO) impaired ex vivo glucose-sensing, as well as in vivo responses to peripheral glucose injection or repeated palatable food presentation and consumption. Impaired metabolic-sensing in AgPP neurons reduced acute dopamine release (seconds) to palatable food consumption and during operant responding, as assessed by GRAB-DA photometry in the nucleus accumbens, but not the dorsal striatum. Impaired metabolic-sensing in AgRP neurons suppressed radiolabelled 18F-fDOPA accumulation after ~30 min in the dorsal striatum but not the nucleus accumbens. Impaired metabolic sensing in AgRP neurons suppressed motivated operant responding for sucrose rewards during fasting. Thus, metabolic-sensing in AgRP neurons is required for the appropriate temporal integration and transmission of homeostatic hunger-sensing to dopamine signalling in the striatum

    The Astropy Problem

    Get PDF
    The Astropy Project (http://astropy.org) is, in its own words, "a community effort to develop a single core package for Astronomy in Python and foster interoperability between Python astronomy packages." For five years this project has been managed, written, and operated as a grassroots, self-organized, almost entirely volunteer effort while the software is used by the majority of the astronomical community. Despite this, the project has always been and remains to this day effectively unfunded. Further, contributors receive little or no formal recognition for creating and supporting what is now critical software. This paper explores the problem in detail, outlines possible solutions to correct this, and presents a few suggestions on how to address the sustainability of general purpose astronomical software

    Comparison of seven prognostic tools to identify low-risk pulmonary embolism in patients aged <50 years

    Get PDF
    publishersversionPeer reviewe
    corecore