19 research outputs found

    Anesthetic Considerations for Deep Brain Stimulation

    Get PDF
    Deep brain stimulation (DBS) was used to treat refractory Parkinson’s disease (PD) for the first time in 1987 by Professor Benabid’s group by placing stimulating electrodes into targeted brain structures. DBS is a widely accepted neurosurgical treatment for Parkinson’s disease (PD), benign tremor, dystonia, epilepsy, and other neuropsychiatric disorders with no significant changes in anatomical brain structures. Prior to the introduction of DBS, traditional treatment for PD involved surgical removal of parts of the brain known as thalamotomy, pallidotomy, and cingulotomy. Intraoperative identification of the affected areas of brain is possible through a couple of mechanisms involving electrical stimulation and monitoring of the brain function, known as “functional neurosurgery”. Implantation of electrodes in the targeted area and the insertion of a programmable pulse generator under the clavicle or in the abdomen are the main steps in DBS surgery. Anesthetic management for DBS remains controversial and might vary between institutions and physicians. Although no guidelines have been developed, there are some common anesthetic considerations for DBS surgery, including difficult airway management, facilitation of neuromonitoring, and anesthetic drugs interference with microelectrode recordings (MERs). Local anesthesia, general anesthesia, and monitored anesthesia care (MAC) have been used worldwide in patients undergoing DBS

    Sugammadex versus neostigmine for neuromuscular blockade reversal in outpatient surgeries: A randomized controlled trial to evaluate efficacy and associated healthcare cost in an academic center

    Get PDF
    IntroductionNeuromuscular blockade is an essential component of the general anesthesia as it allows for a better airway management and optimal surgical conditions. Despite significant reductions in extubation and OR readiness-for-discharge times have been associated with the use of sugammadex, the cost-effectiveness of this drug remains controversial. We aimed to compare the time to reach a train-of-four (TOF) response of ≥0.9 and operating room readiness for discharge in patients who received sugammadex for moderate neuromuscular blockade reversal when compared to neostigmine during outpatient surgeries under general anesthesia. Potential reduction in time for OR discharge readiness as a result of sugammadex use may compensate for the existing cost-gap between sugammadex and neostigmine.MethodsWe conducted a single-center, randomized, double arm, open-label, prospective clinical trial involving adult patients undergoing outpatient surgeries under general anesthesia. Eligible subjects were randomized (1:1 ratio) into two groups to receive either sugammadex (Groups S), or neostigmine/glycopyrrolate (Group N) at the time of neuromuscular blockade reversal. The primary outcome was the time to reverse moderate rocuronium-induced neuromuscular blockade (TOF ratio ≥0.9) in both groups. In addition, post-anesthesia care unit (PACU)/hospital length of stay (LOS) and perioperative costs were compared among groups as secondary outcomes.ResultsThirty-seven subjects were included in our statistical analysis (Group S= 18 subjects and Group N= 19 subjects). The median time to reach a TOF ratio ≥0.9 was significantly reduced in Group S when compared to Group N (180 versus 540 seconds; p = 0.0052). PACU and hospital LOS were comparable among groups. Postoperative nausea and vomiting was the main adverse effect reported in Group S (22.2% versus 5.3% in Group N; p = 0.18), while urinary retention (10.5%) and shortness of breath (5.3%) were only experienced by some patients in Group N. Moreover, no statistical differences were found between groups regarding OR/anesthesia, PACU, and total admission costs.DiscussionSugammadex use was associated with a significantly faster moderate neuromuscular blockade reversal. We found no evidence of increased perioperative costs associated with the use of sugammadex in patients undergoing outpatient surgeries in our academic institution.Clinical trial registration[https://clinicaltrials.gov/] identifier number [NCT03579589]

    Prediction of Opioid-Induced Respiratory Depression on Inpatient Wards Using Continuous Capnography and Oximetry: An International Prospective, Observational Trial.

    Get PDF
    BACKGROUND: Opioid-related adverse events are a serious problem in hospitalized patients. Little is known about patients who are likely to experience opioid-induced respiratory depression events on the general care floor and may benefit from improved monitoring and early intervention. The trial objective was to derive and validate a risk prediction tool for respiratory depression in patients receiving opioids, as detected by continuous pulse oximetry and capnography monitoring. METHODS: PRediction of Opioid-induced respiratory Depression In patients monitored by capnoGraphY (PRODIGY) was a prospective, observational trial of blinded continuous capnography and oximetry conducted at 16 sites in the United States, Europe, and Asia. Vital signs were intermittently monitored per standard of care. A total of 1335 patients receiving parenteral opioids and continuously monitored on the general care floor were included in the analysis. A respiratory depression episode was defined as respiratory rate ≤5 breaths/min (bpm), oxygen saturation ≤85%, or end-tidal carbon dioxide ≤15 or ≥60 mm Hg for ≥3 minutes; apnea episode lasting \u3e30 seconds; or any respiratory opioid-related adverse event. A risk prediction tool was derived using a multivariable logistic regression model of 46 a priori defined risk factors with stepwise selection and was internally validated by bootstrapping. RESULTS: One or more respiratory depression episodes were detected in 614 (46%) of 1335 general care floor patients (43% male; mean age, 58 ± 14 years) continuously monitored for a median of 24 hours (interquartile range [IQR], 17-26). A multivariable respiratory depression prediction model with area under the curve of 0.740 was developed using 5 independent variables: age ≥60 (in decades), sex, opioid naivety, sleep disorders, and chronic heart failure. The PRODIGY risk prediction tool showed significant separation between patients with and without respiratory depression (P \u3c .001) and an odds ratio of 6.07 (95% confidence interval [CI], 4.44-8.30; P \u3c .001) between the high- and low-risk groups. Compared to patients without respiratory depression episodes, mean hospital length of stay was 3 days longer in patients with ≥1 respiratory depression episode (10.5 ± 10.8 vs 7.7 ± 7.8 days; P \u3c .0001) identified using continuous oximetry and capnography monitoring. CONCLUSIONS: A PRODIGY risk prediction model, derived from continuous oximetry and capnography, accurately predicts respiratory depression episodes in patients receiving opioids on the general care floor. Implementation of the PRODIGY score to determine the need for continuous monitoring may be a first step to reduce the incidence and consequences of respiratory compromise in patients receiving opioids on the general care floor

    Perioperative Management of Subarachnoid Hemorrhage in a Patient with Alagille Syndrome and Unrepaired Tetralogy of Fallot: Case Report

    No full text
    Alagille syndrome (ALGS) is a genetic disorder associated with multisystem dysfunction involving the hepatic, cardiovascular, and neurologic systems. Tetralogy of Fallot (TOF), a congenital cardiac anomaly, is commonly found in these patients. Patients with ALGS may also have an increased risk of cerebrovascular abnormalities and bleeding. Ruptured cerebral aneurysm and subarachnoid hemorrhage (SAH) may be developed, increasing the incidence of morbidity and mortality. Advances in neuroimaging and neurosurgery have allowed early identification and treatment of such vascular abnormalities, improving patients’ outcomes and reducing life-threatening complications such as intracranial bleeding. Authors describe the perioperative management of a patient with ALGS and TOF who was admitted to the emergency department due a ruptured intracranial aneurysm with concomitant SAH. Surgical treatment included diagnostic cerebral arteriography with coil embolization of a left posterior communicating artery aneurysm, and placement of right external ventricular drain (EVD). The combination of neuroprotective anesthetic techniques, fast emergence from anesthesia, and maintenance of intraoperative hemodynamic stability led to a successful perioperative management. A multidisciplinary approach in specialized centers is essential for the treatment of patients with SAH, especially in patients with ALGS and complex congenital heart disease such as TOF

    Mechanical ventilation and cardiopulmonary bypass: a narrative review of the mechanistic lung protective measures

    No full text
    Postoperative pulmonary dysfunction is a multifactorial complication in patients undergoing cardiac surgery with cardiopulmonary bypass (CPB). Numerous risk factors including individual, surgery- and anesthesia-related have been identified. Exacerbated systemic and pulmonary inflammatory response to CPB is one of the most studied mechanisms of lung injury in this patient setting. However, current literature lacks specific intraoperative mechanical ventilation (MV) strategies associated with a significant improvement in patients’ outcomes. We reviewed the randomized clinical trials and other reports published within the last 5 years involving patients undergoing cardiac surgery with CPB in order to summarize the existing MV strategies used in these patients and their associated outcomes. Moreover, we described the pathophysiological mechanisms involved in post- CPB lung injury and the mechanistic effects of protective ventilation

    An international observational study to assess the impact of the Omicron variant emergence on the clinical epidemiology of COVID-19 in hospitalised patients

    No full text
    Background: Whilst timely clinical characterisation of infections caused by novel SARS-CoV-2 variants is necessary for evidence-based policy response, individual-level data on infecting variants are typically only available for a minority of patients and settings. Methods: Here, we propose an innovative approach to study changes in COVID-19 hospital presentation and outcomes after the Omicron variant emergence using publicly available population-level data on variant relative frequency to infer SARS-CoV-2 variants likely responsible for clinical cases. We apply this method to data collected by a large international clinical consortium before and after the emergence of the Omicron variant in different countries. Results: Our analysis, that includes more than 100,000 patients from 28 countries, suggests that in many settings patients hospitalised with Omicron variant infection less often presented with commonly reported symptoms compared to patients infected with pre-Omicron variants. Patients with COVID-19 admitted to hospital after Omicron variant emergence had lower mortality compared to patients admitted during the period when Omicron variant was responsible for only a minority of infections (odds ratio in a mixed-effects logistic regression adjusted for likely confounders, 0.67 [95% confidence interval 0.61-0.75]). Qualitatively similar findings were observed in sensitivity analyses with different assumptions on population-level Omicron variant relative frequencies, and in analyses using available individual-level data on infecting variant for a subset of the study population. Conclusions: Although clinical studies with matching viral genomic information should remain a priority, our approach combining publicly available data on variant frequency and a multi-country clinical characterisation dataset with more than 100,000 records allowed analysis of data from a wide range of settings and novel insights on real-world heterogeneity of COVID-19 presentation and clinical outcome

    The value of open-source clinical science in pandemic response: lessons from ISARIC

    No full text
    International audienc

    The value of open-source clinical science in pandemic response: lessons from ISARIC

    No full text
    corecore